作为一名教职工,时常要开展教案准备工作,教案是教学活动的依据,有着重要的地位。写教案需要注意哪些格式呢?以下是小编为大家整理的高一数学教案函数,欢迎大家分享。
高一函数课件 篇1
教学目标:
知识与技能:让学生理解函数的定义,掌握函数的表示方法(解析式、表格、图像),能识别并判断函数关系。
过程与方法:通过实例,引导学生观察、分析、归纳,培养学生从实际问题中抽象出函数关系的能力。
情感、态度与价值观:培养学生的数学逻辑思维能力和抽象思维能力,让学生感受数学在解决实际问题中的应用价值。
教学重点:
函数的定义及其表示方法。
教学难点:
从实际问题中抽象出函数关系。
教学过程:
一、导入新课
通过日常生活中的实例(如购物消费与付款金额的关系,汽车行驶距离与时间的关系等),引导学生思考这些关系的特点,引出函数的概念。
二、新课讲解
函数的定义:设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
函数的表示方法:
解析式法:如y=x^2,y=2x+1等。
列表法:通过列出x和y的对应值来表示函数关系。
图像法:通过绘制函数的图像来表示函数关系。
函数关系的判断:通过实例,引导学生判断哪些关系可以构成函数,哪些不能,并说明原因。
三、例题讲解
通过解析式法表示函数关系。
通过列表法表示函数关系。
通过图像法表示函数关系。
四、课堂练习
布置一些练习题,让学生独立完成,以巩固所学知识。
五、课堂小结
总结本节课的学习内容,强调函数的`概念及其表示方法的重要性,并提醒学生在实际问题中注意应用函数的思想和方法。
六、作业布置
布置相关练习题,要求学生课后完成,以加深对函数概念的理解和应用。
教学反思:
课后反思本节课的教学效果,思考如何更好地引导学生从实际问题中抽象出函数关系,以及如何提高学生的数学逻辑思维能力和抽象思维能力。同时,也要注意关注学生的学习情况,及时给予指导和帮助,以促进学生的全面发展。
高一函数课件 篇2
[教学重、难点]
认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。
[教学准备]
学生、老师剪下附页2中的图2。
[教学过程]
一、画一画,说一说
1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。
2、教师巡查练习情况。
3、学生展示练习,说一说为什么是锐角、直角、钝角?
二、分一分
1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?
2、汇报:分类的标准和方法。可以按角来分,可以按边来分。
二、按角分类:
1、观察第一类三角形有什么共同的'特点,从而归纳出三个角都是锐角的'三角形是锐角三角形。
2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形
3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。
三、按边分类:
1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。
2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?
四、填一填:
24、25页让学生辨认各种三角形。
五、练一练:
第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。
第2题:在点子图上画三角形第3题:剪一剪。
六、完成26页实践活动。
高一函数课件 篇3
教材分析:
“指数函数”是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的.作为重要的基本初等函数之一,指数函数既是函数近代定义及性质的第一次应用,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础.指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以指数函数应重点研究.
学情分析:yJS21.CoM
通过初中阶段的学习和高中对函数、指数的运算等知识的系统学习,学生对函数已经有了一定的认识,学生对用“描点法”描绘出函数图象的方法已基本掌握,已初步了解数形结合的思想.另外,学生对由特殊到一般再到特殊的数学活动过程已有一定的体会.
教学目标:
知识与技能:理解指数函数的概念和意义,能正确作出其图象,掌握指数函数的性质并能自觉、灵活地应用其性质(单调性、中介值)比较大小.
过程与方法:
(1) 体会从特殊到一般再到特殊的研究问题的方法,培养学生观察、归纳、猜想、概括的能力,让学生了解数学来源于生活又在生活中有广泛的应用;理解并掌握探求函数性质的一般方法;
(2) 从数和形两方面理解指数函数的性质,体会数形结合、分类讨论的数学思想方法,提高思维的灵活性,培养学生直观、严谨的思维品质.
情感、态度与价值观:
(1)体验从特殊到一般再到特殊的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题,激发学生自主探究的精神,在探究过程中体验合作学习的乐趣;
(2)让学生在数形结合中感悟数学的统一美、和谐美,进一步培养学生的学习兴趣.
教学重点:指数函数的图象和性质
教学难点:指数函数概念的引入及指数函数性质的应用
教法研究:
本节课准备由实际问题引入指数函数的概念,这样可以让学生知道指数函数的概念来源于客观实际,便于学生接受并有利于培养学生用数学的意识.
利用函数图象来研究函数性质是函数中的一个非常重要的思想,本节课将是利用特殊的指数函数图象归纳总结指数函数的性质,这样便于学生研究其变化规律,理解其性质并掌握一般地探求函数性质的方法 同时运用现代信息技术学习、探索和解决问题,帮助学生理解新知识
本节课使用的教学方法有:直观教学法、启发引导法、发现法
教学过程:
一、问题情境 :
问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,以此类推,一个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?
问题2:一种放射性物质不断变化为其它物质,每经过一年剩余质量约是原来的 ,设该物质的初始质量为1,经过 年后的剩余质量为 ,你能写出 之间的函数关系式吗?
分析可知,函数的关系式分别是 与
问题3:在问题1和2中,两个函数的自变量都是正整数,但在实际问题中自变量不一定都是正整数,比如在问题2中,我们除了关心1年、2年、3年后该物质的剩余量外,还想知道3个月、一年半后该物质的剩余量,怎么办?
这就需要对函数的定义域进行扩充,结合指数概念的的扩充,我们也可以将函数的定义域扩充至全体实数,这样就得到了一个新的函数——指数函数.
二、数学建构 :
1]定义:
一般地,函数 叫做指数函数,其中 .
问题4:为什么规定 ?
问题5:你能举出指数函数的'例子吗?
阅读材料(“放射性碳法”测定古物的年代):
在动植物体内均含有微量的放射性 ,动植物死亡后,停止了新陈代谢, 不在产生,且原有的 会自动衰变.经过5740年( 的半衰期),它的残余量为原来的一半.经过科学测定,若 的原始含量为1,则经过x年后的残留量为 = .
这种方法经常用来推算古物的年代.
练习1:判断下列函数是否为指数函数.
(1) (2)
(3) (4)
说明:指数函数的解析式y= 中, 的系数是1.
有些函数貌似指数函数,实际上却不是,如y= +k (a>0且a 1,k Z);
有些函数看起来不像指数函数,实际上却是,如y= (a>0,且a 1),因为它可以化为y= ,其中 >0,且 1
2]通过图象探究指数函数的性质及其简单应用:利用几何画板及其他多媒体软件和学生一起完成
问题6:我们研究函数的性质,通常都研究哪些性质?一般如何去研究?
函数的定义域,值域,单调性,奇偶性等;
利用函数图象研究函数的性质
问题7:作函数图象的一般步骤是什么?
列表,描点,作图
探究活动1:用列表描点法作出 , 的图像(借助几何画板演示),观察、比较这两个函数的图像,我们可以得到这两个函数哪些共同的性质?请同学们仔细观察.
引导学生分析图象并总结此时指数函数的性质(底数大于1):
(1)定义域?R
(2)值域?函数的值域为
(3)过哪个定点?恒过 点,即
(4)单调性? 时, 为 上的增函数
(5)何时函数值大于1?小于1? 当 时, ;当 时,
问题8::是否所有的指数函数都是这样的性质?你能找出与刚才的函数性质不一样的指数函数吗?
(引导学生自我分析和反思,培养学生的反思能力和解决问题的能力).
根据学生的发现,再总结当底数小于1时指数函数的相关性质并作比较.
问题9:到现在,你能自制一份表格,比较 及 两种不同情况下 的图象和性质吗?
(学生完成表格的设计,教师适当引导)
高一函数课件 篇4
一、指导思想:
使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。
1。获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2。提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3。提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4。发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5。提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6。具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:
我们所使用的教材是人教版《普通高中课程标准实验教科书数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:
1。亲和力:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。
2。问题性:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3。科学性与思想性:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。
4。时代性与应用性:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:
1。选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生看个究竟的冲动,以达到培养其兴趣的目的。
2。通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3。在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
四、学情分析:
1、基本情况:12班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。
14班共人,男生人,女生人;本班相对而言,数学尖子约人,中上等生约人,中等生约人,中下生约人,后进生约人。
2、两个班均属普高班,学习情况良好,但学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算能力太差,学生不喜欢去算题,嫌麻烦,只注重思路,因此在以后的教学中,重点在于培养学生的计算能力,同时要进一步提高其思维能力。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此时间上可能仍然吃紧。同时,其底子薄弱,因此在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。
五、教学措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的.要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
高一函数课件 篇5
教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课
教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体
问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这
些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简
称集。
3.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
4.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a?A(或a A)
5.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N_或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。课题:§1.2集合间的基本关系
教材分析:类比实数的大小关系引入集合的包含与相等关系
了解空集的含义
课型:新授课
教学目的:(1)了解集合之间的包含、相等关系的含义;
(2)理解子集、真子集的概念;
(3)能利用Venn图表达集合间的关系;
(4)了解与空集的含义。
教学重点:子集与空集的概念;用Venn图表达集合间的关系。教学难点:弄清元素与子集、属于与包含之间的区别;
教学过程:
四、引入课题
1、复习元素与集合的关系——属于与不属于的关系,填以下空白:(1)0 N;(2;(3)-1.5 R
2、类比实数的大小关系,如5;7,2≤2,试想集合间是否有类似的“大小”关系呢?(宣
布课题)
五、新课教学
A={1,2,3},B={1,2,3,4}
集合A是集合B的部分元素构成的.集合,我们说集合B包含集合A;
如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。
记作:A?B(或B?A)
读作:A包含于(is contained in)B,或B包含(contains)A (一)集合与集合之间的“包含”关系;
当集合A不包含于集合B时,记作B
用Venn图表示两个集合间的“包含”关系A?B(或B?A)
(二)集合与集合之间的“相等”关系;
A?B且B?A,则A=B中的元素是一样的,因此A=B
?A?B即A=B?? B?A?
结论:
任何一个集合是它本身的子集
(三)真子集的概念
若集合A?B,存在元素x∈B且x?A,则称集合A是集合B的真子集(proper subset)。
记作:A B(或B A)
读作:A真包含于B(或B真包含A)
(四)空集的概念
(实例引入空集概念)
不含有任何元素的集合称为空集(empty set),记作:?规定:空集是任何集合的子集,是任何非空集合的真子集。
(五)结论:1A?A ○2A?B,且B?C,则A?C ○
(六)例题
(1)写出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化简集合A={x|x-3>2},B={x|x≥5},并表示A、B的关系;
(七)归纳小结,强化思想
两个集合之间的基本关系只有“包含”与“相等”两种,可类比两个实数间的大小关系,同时还要注意区别“属于”与“包含”两种关系及其表示方法;
1已知集合A={x|a取值范围。
2设集合A={○四边形},B={平行四边形},C={矩形},
D={正方形},试用Venn图表示它们之间的关系。
课题:§1.3集合的基本运算
教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课型:新授课
教学重点:集合的交集与并集、补集的概念;
教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;
教学过程:
六、引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
七、新课教学
1.并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B
Venn图表示:读作:“A并B”即:A∪B={x|x∈A,或x∈B}
高一函数课件 篇6
目标:
1.让学生熟练掌握二次函数的图象,并会判断一元二次方程根的存在性及根的个数 ;
2.让学生了解函数的零点与方程根的联系 ;
3.让学生认识到函数的图象及基本性质(特别是单调性)在确定函数零点中的作用 ;
4。培养学生动手操作的'能力 。
二、教学重点、难点
重点:零点的概念及存在性的判定;
难点:零点的确定。
三、复习引入
例1:判断方程 x2-x-6=0 解的存在。
分析:考察函数f(x)= x2-x-6, 其
图像为抛物线容易看出,f(0)=-60,
f(4)0,f(-4)0
由于函数f(x)的图像是连续曲线,因此,
点B (0,-6)与点C(4,6)之间的那部分曲线
必然穿过x轴,即在区间(0,4)内至少有点
X1 使f(X1)=0;同样,在区间(-4,0) 内也至
少有点X2,使得f( X2)=0,而方程至多有两
个解,所以在(-4,0),(0,4)内各有一解
定义:对于函数y=f(x),我们把使f(x)=0的实数 x叫函数y=f(x)的零点
抽象概括
y=f(x)的图像与x轴的交点的横坐标叫做该函数的零点,即f(x)=0的解。
若y=f(x)的图像在[a,b]上是连续曲线,且f(a)f(b)0,则在(a,b)内至少有一个零点,即f(x)=0在 (a,b)内至少有一个实数解。
f(x)=0有实根(等价与y=f(x))与x轴有交点(等价与)y=f(x)有零点
所以求方程f(x)=0的根实际上也是求函数y=f(x)的零点
注意:1、这里所说若f(a)f(b)0,则在区间(a,b)内方程f(x)=0至少有一个实数解指出了方程f(x)=0的实数解的存在性,并不能判断具体有多少个解;
2、若f(a)f(b)0,且y=f(x)在(a,b)内是单调的,那么,方程f(x)=0在(a,b)内有唯一实数解;
3、我们所研究的大部分函数,其图像都是连续的曲线;
4、但此结论反过来不成立,如:在[-2,4]中有根,但f(-2)0, f(4) 0,f(-2) f(4)
5、缺少条件在[a,b]上是连续曲线则不成立,如:f(x)=1/ x,有f(-1)xf(1)0但没有零点。
四、知识应用
例2:已知f(x)=3x-x2 ,问方程f(x)=0在区间[-1,0]内没有实数解?为什么?
解:f(x)=3x-x2的图像是连续曲线, 因为
f(-1)=3-1-(-1)2 =-2/30, f(0)=30-(0)2 =-10,
所以f(-1) f(0) 0,在区间[-1,0]内有零点,即f(x)=0在区间[-1,0]内有实数解
练习:求函数f(x)=lnx+2x-6 有没有零点?
例3 判定(x-2)(x-5)=1有两个相异的实数解,且有一个大于5,一个小于2。
解:考虑函数f(x)=(x-2)(x-5)-1,有
f(5)=(5-2)(5-5)-1=-1
f(2)=(2-2)(2-5)-1=-1
又因为f(x)的图像是开口向上的抛物线,所以抛物线与横轴在(5,+)内有一个交点,在( -,2)内也有一个交点,所以方程式(x-2)(x-5)=1有两个相异数解,且一个大于5,一个小于2。
练习:关于x的方程2x2-3x+2m=0有两个实根均在[-1,1]内,求m的取值范围。
五、课后作业
p133第2,3题
高一函数课件 篇7
一、本课数学内容的本质、地位、作用分析
普通高中课标教材必修1共安排了三章内容,第一章是《集合与函数的概念》,第二章是《基本初等函数(Ⅰ)》,第三章是《函数的应用》。第三章编排了两块内容,第一部分是函数与方程,第二部分是函数模型及其应用。本节课方程的根与函数的零点,正是在这种建立和运用函数模型的大背景下展开的。本节课的主要教学内容是函数零点的定义和函数零点存在的判定依据,这两者显然是为下节“用二分法求方程近似解”这一“函数的应用”服务的,同时也为后续学习的算法埋下伏笔。由此可见,它起着承上启下的作用,与整章、整册综合成一个整体,学好本节意义重大。
函数在数学中占据着不可替代的核心地位,根本原因之一在于函数与其他知识具有广泛的联系,而函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机地联系在一起。方程本身就是函数的一部分,用函数的观点来研究方程,就是将局部放入整体中研究,进而对整体和局部都有一个更深层次的理解,并学会用联系的观点解决问题,为后面函数与不等式和数列等其他知识的联系奠定基础。
二、教学目标分析
本节内容包含三大知识点:
1、函数零点的定义;
2、方程的根与函数零点的等价关系;
3、零点存在性定理。
结合本节课引入三大知识点的方法,设定本节课的知识与技能目标如下:
1.结合方程根的几何意义,理解函数零点的定义;
2.结合零点定义的探究,掌握方程的实根与其相应函数零点之间的等价关系;
3.结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法.
本节课是学生在学习了函数的性质,具备了初步的数形结合知识的基础上,通过对特殊函数图象的分析进行展开的,是培养学生“化归与转化思想”,“数形结合思想”,“函数与方程思想”的优质载体。
结合本节课教学主线的设计,设定本节课的过程与方法目标如下:
1.通过化归与转化思想的引导,培养学生从已有认知结构出发,寻求解决棘手问题方法的习惯;
2.通过数形结合思想的渗透,培养学生主动应用数学思想的意识;
3.通过习题与探究知识的相关性设置,引导学生深入探究得出判断函数的零点个数和所在区间的方法;
4.通过对函数与方程思想的不断剖析,促进学生对知识灵活应用的能力。
由于本节课将以教师引导,学生探究为主体形式,故设定本节课的'情感、态度与价值观目标如下:
1.让学生体验化归与转化、数形结合、函数与方程这三大数学思想在解决数学问题时的意义与价值;
2.培养学生锲而不舍的探索精神和严密思考的良好学习习惯。
3.使学生感受学习、探索发现的乐趣与成功感。
三、教学问题诊断
学生具备的认知基础:
1.基本初等函数的图象和性质;
2.一元二次方程的根和相应函数图象与x轴的联系;
3.将数与形相结合转化的意识。
学生欠缺的实际能力:
1.主动应用数形结合思想解决问题的意识还不强;
2.将未知问题已知化,将复杂问题简单化的化归意识淡薄;
3.从直观到抽象的概括总结能力还不够;
4.概念的内涵与外延的探究意识有待提高。
对本节课的教学,教材是利用一组一元二次方程和二次函数的关系来引入函数零点的。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数零点,再来理解其他复杂的函数零点就会容易一些。但学生对如何解一元二次方程以及二次函数的图象早就熟练了,这样的引入过程使学生感到平淡,激发不起他们的兴趣,他们对零点的理解也只会浮于表面,也无法使其体会引入函数零点的必要性,理解不了方程根存在的本质原因是零点的存在。
教材是通过由直观到抽象的过程,才得到判断函数y=f(x)在(a,b)内有零点的一种条件的,如果不能有效地对该过程进行引导,容易出现学生被动接受,盲目记忆的结果,而丧失了对学生应用数学思想方法的意识进行培养的机会。
教材中零点存在性定理只表述了存在零点的条件,但对存在零点的个数并未多做说明,这就要求教师对该定理的内涵和外延要有清晰的把握,引导学生探究出只存在一个零点的条件,否则学生对定理的内容很容易心存疑虑。
四、本节课的教法特点以及预期效果分析
本节课教法的几大特点总结如下:
1.以问题为主线贯穿始终;
2.精心设置引导性的语言放手让学生探究;
3.注重在引导学生探究问题解法的过程中渗透数学思想;
4.在探究过程中引入新知识点,在引入新知识点后适时归纳总结,进行探究阶段性成果的应用。
由于所设置的主线问题具有很高的探究价值,所以预期学生热情会很高,积极性调动起来,那整节课才能活起来;
由于为了更好地组织学生探究所设置的引导性语言,重在去挖掘学生内心真实的想法和他们最真实体会到的困难,所以通过学生活动会更多地暴露他们在基础知识掌握方面的缺憾,免不了要随时纠正对过往知识的错误理解;
因为在探究过程中不断渗透数学思想,学生对亲身经历的解题方法就会有更深的体会,主动应用数学思想的意识在上升,对于主线问题也应该可以迎刃而解;
因为在探究过程中引入新知识点,学生对新知识产生的必要性会有更深刻的体会和认识,同时在新知识产生后,又适时地加以应用,学生对新知识的应用能力不断提高。
高一函数课件 篇8
教学目标
1.了解函数的单调性和奇偶性的概念,掌握有关证明和判断的基本方法。
(1)了解并区分增函数,减函数,单调性,单调区间,奇函数,偶函数等概念。
(2)能从数和形两个角度认识单调性和奇偶性。
(3)能借助图象判断一些函数的单调性,能利用定义证明某些函数的单调性;能用定义判断某些函数的奇偶性,并能利用奇偶性简化一些函数图象的绘制过程。
2.通过函数单调性的证明,提高学生在代数方面的推理论证能力;通过函数奇偶性概念的形成过程,培养学生的观察,归纳,抽象的能力,同时渗透数形结合,从特殊到一般的数学思想。
3.通过对函数单调性和奇偶性的理论研究,增学生对数学美的体验,培养乐于求索的精神,形成科学,严谨的研究态度。
教学建议
一、知识结构
(1)函数单调性的概念。包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系。
(2)函数奇偶性的概念。包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的'图像。
二、重点难点分析
(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识。教学的难点是领悟函数单调性, 奇偶性的本质,掌握单调性的证明。
(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它。这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫。单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点。
三、教法建议
(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,二次函数。反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢。如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来。在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来。
(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律。
函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来。经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式。关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件。
高一函数课件 篇9
教学目标:
知识与技能:理解函数的概念,掌握函数的表示方法,能识别函数关系,理解函数的定义域、值域等基本概念。
过程与方法:通过实例分析,培养学生分析问题、解决问题的能力,提高学生的抽象思维能力和逻辑推理能力。
情感、态度与价值观:培养学生对数学的兴趣和热爱,提高学生的自信心和团结协作精神。
教学重点:
函数的定义及其表示方法,函数的定义域和值域。
教学难点:
函数概念的理解,特别是从实际问题中抽象出函数关系。
教学过程:
一、导入新课
通过日常生活中的实例(如气温随时间的变化、购物金额随商品数量的变化等),引导学生感受变量之间的关系,为引入函数概念做铺垫。
二、新课讲解
函数的概念
通过实例,引导学生理解函数是一个特殊的对应关系,它描述了两个变量之间的'依存关系。给出函数的定义,并解释定义中的各个要素(定义域、值域、对应法则)。
函数的表示方法
介绍函数的三种表示方法:解析法、列表法和图象法。通过具体例子,让学生理解并掌握每种表示方法的特点和应用场景。
函数的定义域和值域
结合实例,讲解函数的定义域和值域的概念。引导学生通过解析式或图象确定函数的定义域和值域。
三、巩固练习
给出一些实际问题的情境,让学生尝试抽象出函数关系,并确定函数的定义域和值域。
给出一些函数的解析式或图象,让学生判断其是否为函数,并说明理由。
四、课堂小结
总结本节课的主要内容,强调函数概念的重要性,并布置课后作业。
五、课后作业
完成课本上的相关习题,巩固本节课所学内容。
收集一些生活中的例子,尝试用函数来描述其中的变量关系。
教学反思:
本节课通过实例引入函数概念,使抽象的概念具体化,有助于学生的理解。在巩固练习环节,通过实际问题的解决,培养了学生的应用能力和解决问题的能力。但部分学生在理解函数概念时仍存在困难,需要在后续教学中加强引导和练习。同时,也要注意培养学生的抽象思维能力和逻辑推理能力,为后续的数学学习打下基础。
高一函数课件 篇10
教学目标:
掌握二倍角的正弦、余弦、正切公式,能用上述公式进行简单的求值、化简、恒等证明;引导学生发现数学规律,让学生体会化归这一基本数学思想在发现中所起的作用,培养学生的创新意识.
教学重点:
二倍角公式的推导及简单应用.
教学难点:
理解倍角公式,用单角的三角函数表示二倍角的三角函数.
教学过程:
Ⅰ.课题导入
前一段时间,我们共同探讨了和角公式、差角公式,今天,我们继续探讨一下二倍角公式.我们知道,和角公式与差角公式是可以互相化归的.当两角相等时,两角之和便为此角的二倍,那么是否可把和角公式化归为二倍角公式呢?请同学们试推.
先回忆和角公式
sin(α+β)=sinαcosβ+cosαsinβ
当α=β时,sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
当α=β时cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
当α=β时,tan2α=2tanα1-tan2α
Ⅱ.讲授新课
同学们推证所得结果是否与此结果相同呢?其中由于sin2α+cos2α=1,公式C2α还可以变形为:cos2α=2cos2α-1或:cos2α=1-2sin2α
同学们是否也考虑到了呢?
另外运用这些公式要注意如下几点:
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有当α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)时才成立,否则不成立(因为当α=π2 +kπ,k∈Z时,tanα的值不存在;当α=π4 +kπ2 ,k∈Z时tan2α的值不存在).
当α=π2 +kπ(k∈Z)时,虽然tanα的`值不存在,但tan2α的值是存在的,这时求tan2α的值可利用诱导公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情况下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情况下,才有可能成立[当且仅当α=kπ(k∈Z)时,sin2α=2sinα=0成立].
同样在一般情况下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不仅可运用于将2α作为α的2倍的情况,还可以运用于诸如将4α作为2α的2倍,将α作为 α2 的2倍,将 α2 作为 α4 的2倍,将3α作为 3α2 的2倍等等.
高一函数课件 篇11
一、说课内容:
苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题
二、教材分析:
1、教材的地位和作用
这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:
(1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力.
(3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心.
3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:
1、从创设情境入手,通过知识再现,孕伏教学过程
2、从学生活动出发,通过以旧引新,顺势教学过程
3、利用探索、研究手段,通过思维深入,领悟教学过程
四、教学过程:
(一)复习提问
1.什么叫函数?我们之前学过了那些函数?
(一次函数,正比例函数,反比例函数)
2.它们的形式是怎样的?
(y=kx+b,k≠0;y=kx ,k≠0;y= , k≠0)
3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?
【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k≠0的条件,以备与二次函数中的a进行比较.
(二)引入新课
函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)
例1、(1)圆的半径是r(cm)时,面积s (cm)与半径之间的关系是什么?
解:s=πr(r>0)
例2、用周长为20m的篱笆围成矩形场地,场地面积y(m)与矩形一边长x(m)之间的关系是什么?
解: y=x(20/2-x)=x(10-x)=-x+10x (0
例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?
解: y=100(1+x)
=100(x+2x+1)
= 100x+200x+100(0
教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?
【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。
(三)讲解新课
以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。
二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。
巩固对二次函数概念的理解:
1、强调“形如”,即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。
2、在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)
3、为什么二次函数定义中要求a≠0 ?
(若a=0,ax2+bx+c就不是关于x的二次多项式了)
4、在例3中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.
5、b和c是否可以为零?
由例1可知,b和c均可为零.
若b=0,则y=ax2+c;
若c=0,则y=ax2+bx;
若b=c=0,则y=ax2.
注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式.
【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。
判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.
(1)y=3(x-1)+1 (2)
(3)s=3-2t (4)y=(x+3)- x
(5) s=10πr (6) y=2+2x
(8)y=x4+2x2+1(可指出y是关于x2的二次函数)
【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。
(四)巩固练习
1.已知一个直角三角形的两条直角边长的和是10cm。
(1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;
(2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关
于x的函数关系式。
【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。
2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3。
(1)分别写出S与x,V与x之间的函数关系式子;
(2)这两个函数中,那个是x的二次函数?
【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。
3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3
(1)分别写出C关于r;V关于r的函数关系式;
(2)两个函数中,都是二次函数吗?
【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。
4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.
【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。
(五)拓展延伸
1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式.
【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。
2.确定下列函数中k的值
(1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的.值一定是______
(2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______
【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.
(六) 小结思考:
本节课你有哪些收获?还有什么不清楚的地方?
【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。
(七) 作业布置:
必做题:
1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?
2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。
选做题:
1.已知函数 是二次函数,求m的值。
2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象
【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。
五、教学设计思考
以实现教学目标为前提
以现代教育理论为依据
以现代信息技术为手段
贯穿一个原则——以学生为主体的原则
突出一个特色——充分鼓励表扬的特色
渗透一个意识——应用数学的意识
感谢您阅读“幼儿教师教育网”的《高一函数课件(锦集十一篇)》一文,希望能解决您找不到幼师资料时遇到的问题和疑惑,同时,yjs21.com编辑还为您精选准备了高一函数课件专题,希望您能喜欢!