作为一名默默奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么大家知道正规的教案是怎么写的吗?以下是小编帮大家整理的有理数的乘法教案,欢迎阅读,希望大家能够喜欢。
有理数运算教案 篇1
教学目标
1.知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;
2.知道底数、指数和幂的概念,会求有理数的正整数指数幂;
3.会用科学记数法表示较大的数.
教学重点
1.有理数乘方的意义,求有理数的正整数指数幂;
2.用科学记数法表示较大的数.
教学难点
有理数乘方结果(幂)的符号的确定.
教学过程(教师)
问题引入
手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?
乘方的有关概念
试一试:
将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.
你还能举出类似的实例吗?
有理数的乘方:同步练习
1.对于式子(-3)6与-36,下列说法中,正确的是()
A.它们的意义相同
B.它们的结果相同
C.它们的意义不同,结果相等
D.它们的意义不同,结果也不相等
2.下列叙述中:
①正数与它的绝对值互为相反数;
②非负数与它的绝对值的差为0;
③-1的立方与它的平方互为相反数;
④±1的倒数与它的平方相等.其中正确的个数有()
A.1B.2C.3D.4
有理数运算教案 篇2
三维目标
一、知识与技能
(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。
(2)能利用计算器进行有理数的乘法运算。
二、过程与方法
经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。
三、情感态度与价值观
培养学生主动探索,积极思考的学习兴趣。
教学重、难点与关键
1.重点:能用法则进行多个因数的乘积运算。
2.难点:积的符号的确定。
3.关键:让学生观察实例,发现规律。
教具准备
投影仪。
四、 教学过程
1.请叙述有理数的乘法法则。
2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授
1.多个有理数相乘,可以把它们按顺序依次相乘。
例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我们知道计算有理数的乘法,关键是确定积的符号。
观察:下列各式的积是正的还是负的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。
教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?
学生完成思考后,教师指出:几个不是0的'数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。
2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。
有理数运算教案 篇3
教学目标
1、理解有理数乘方的概念,掌握有理数乘方的运算;
2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;
3、渗透分类讨论思想?
教学重点和难点
重点:有理数乘方的运算?
难点:有理数乘方运算的符号法则?
课堂教学过程设计
一、从学生原有认知结构提出问题
在小学我们已经学习过aa,记作a2,读作a的平方(或a的二次方);aaa作a3,读作a的立方(或a的三次方);那么,aaaa可以记作什么?读作什么?aaaaa呢?
在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?
二讲授新课
1、求n个相同因数的积的运算叫做乘方?
2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?
一般地,在an中,a取任意有理数,n取正整数?
应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。
3、我们知道,乘方和加、减、乘、除一样,也是一种运算, 就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?
例1 计算:
(1)2, 2, 2,24; (2)-2, 2, 3,(-2)4;
(3)0,02,03,04?
教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?
引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?
(1)模向观察
正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?
(2)纵向观察
互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?
(3)任何一个数的偶次幂都是什么数?
任何一个数的偶次幂都是非负数?
你能把上述的结论用数学符号语言表示吗?
当a0时,an0(n是正整数);
当a
当a=0时,an=0(n是正整数)?
(以上为有理数乘方运算的符号法则)
a2n=(-a)2n(n是正整数);
=-(-a)2n-1(n是正整数);
a2n0(a是有理数,n是正整数)?
例2 计算:
(1)(-3)2,(-3)3,[-(-3)]5;
(2)-32,-33,-(-3)5;
(3) , ?
让三个学生在黑板上计算?
教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?
教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?
课堂练习
计算:
(1) , , ,- , ;
(2)(-1)2001,322,-42(-4)2,-23(-2)3;
(3)(-1)n-1?
三、小结
让学生回忆,做出小结:
1、乘方的有关概念?
2、乘方的符号法则?3?括号的作用?
四、作业
1、计算下列各式:
(-3)2;(-2)3;(-4)4; ;-0.12;
-(-3)3;3(-2)3;-6(-3)3;- (-4)2(-1)5?
2、填表:
3、a=-3,b=-5,c=4时,求下列各代数式的值:
(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b2?
4、当a是负数时,判断下列各式是否成立?
(1)a2=(-a)2; (2)a3=(-a)3; (3)a2= ; (4)a3= .
5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?
6、若(a+1)2+|b-2|=0,求a2000b3的值?
课堂教学设计说明
1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的`认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?
2、数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,,an是学生通过类推得到的?
推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?
3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?
我们知道,学生必须通过自己的探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?
4、有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?
有理数运算教案 篇4
一、学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程
1、创设问题情景,激发学生的`求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
有理数运算教案 篇5
学习目标:
1.知识目标:了解有理数乘法法则的合理性,掌握有理数的乘 法法则,熟练运用有理数的法则进行准确运算.
2.能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力.
3.情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯.
学习重点、难点
重点:有理数乘法运算法则的推导及熟练运用.
难点:有理数乘法运算中积的符号的确定.
学习过程
一、预习导航
1.在小学我们已经接触了乘法,那什么叫乘法呢?
求几个 的运算,叫乘法。
一个数同0相乘,得 0。
2.请你列举几道小学学过的乘法算式.
二、合作探究、展示交流
1. 问题1:森林里住着一只蜗牛,每天都要离开家去寻找食物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在 o点的 ( )边 ( )cm处。
可以列式为:(+2)(+3) =
问题2:如果蜗 牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟后蜗牛应在o点的 ( )边 ( )cm处。
可以列式为:
问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的( )边 ( )cm处。
可以表示为:
问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?
规定:向右为正,现在之后为正。
3分钟前蜗牛应在o点的( )边( )cm处。
可以表示为:
2.观察这四个式子:
(+2)(+ 3)=+6 (-2)(-3)=+6
(-2)(+3)=-6 (+2)(-3)=-6
根据你对有理数乘法的思考,总结填空:
正数乘正数积为__数:负数乘负数积为__数:
负数乘正数积为__数:正数乘负数积为__数:
乘积 的绝对值等于各乘数绝对值的`_____。
?思考:当一个因数为0时,积是多少?
3.试着总结一下有理数乘法法则吧:
两数相乘,同号得 ,异号得 ,并把绝对值 。
任何数同0相乘,都得 。
三、小试牛刀。
1.你能确定下列乘积的符号吗?
3 7 积的符号 为 ;(-3)7积的符号 为 ;
3(-7)积的符号 为 ;(-3)(-7)积的符号 为 .
2先阅读,再填空:
(-5)x(-3).同号两数相乘
(-5)x(-3)=+( )得正
5 x 3= 15把绝对值相乘
所以 (-5) x (-3)= 15
填空:(-7)x 4____________________
(-7)x 4 = -( )___________
7x 4 = 28_____________
所以 (-7)x 4 = ____________
[例1]计算:
(1)(-5) (2)(-5)
(3)(-6)(-0.45) (4)(-7)0=
解:(1)(-5)(-6)=+(56)=+30=30
请同学们仿照上述步骤计算(2)(3)(4)。
(2)(-5) 6 = =
(3)(-6)(-0.45)= =
(4)(-7)0=
让我们来总结求解步骤:
两个数相乘,应先确定积的 ,再确定积的 .
四、巩固练习
1. 小 组口算比赛,看谁更棒
(1)3(-4) (2)2(-6) (3)(-6)2
(4)6(-2) (5)(-6)0 (6)0(-6)
2.仔细计算.,注意积的符号和绝对值。
(1)(-4)0.25 (2)(-0.5)(-2) (3) (- )
(4)(-2)(- ) (5)(- )(- ) (6)(- )5
3.用正负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1千米,气温的变化量为-6℃,攀登3千米后,气温有什么变化?
五分钟过关检测
1.下列说法错误的是()
A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数
C.如果两个数的乘积等于1,那么这两个数互为相 反数
D.一个数同-1相乘, 得原数的相反数
2.在-2,3,4,-5这四个数中,任意两个数相乘,所得的积最大的是( ) A.10 B.12 C.-20 D.不是以上的答案
3.计算下列各题:
(1)(-10)(-9)= (2)(-9)(-10)= ;(3 )9(-2)= ; (4)(-2) 9 = ;(wWw.547118.com 精选范文网)
(5)(-6)(-5)= ; (6)(-5)(-6)=
六、体会联想:
1.有理数的乘法的计算步骤分哪两步?2.有理数的乘法法则是什么?
有理数运算教案 篇6
一、知识与能力
掌握有理数乘法以及乘法运算律,熟练进行有理数乘除运算,发展观察,归纳等方面的能力,用相关知识解决实际问题的能力
二、过程与方法
经历归纳,总结有理数乘法,除法法则及乘法运算律的过程,会观察,选择适当的、较简便的方法进行有理数乘除运算
三、情感、态度、价值观
培养学生学习的自信心,上进心,通过用乘除运算解决简单的实际问题,让学生明确学习教学的目的是学以致用,从而培养学生的主动性、积极性
四、教学重难点
一、重点:熟练进行有理数的乘除运算
二、难点:正确进行有理数的乘除运算
预习导学
通过看课本§1.4的内容,归纳有理数的乘法法则以及乘法运算律
五、教学过程
一、创设情景,谈话导入
我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律
二、精讲点拨质疑问难
根据预习内容,同学们回答以下问题:
1.有理数的.乘法法则:
(1)同号两数相乘___________________________________
(2)异号两数相乘_____________________________________
(3)0与任何自然数相乘,得____
2.有理数的乘法运算律:
(1)乘法交换律:ab=_________
(2)乘法结合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理数的除法法则:
除以一个不等于0的数,等于乘这个数的__________
比较有理数的乘法,除法法则,发现_________可能转化为__________
三、课堂活动强化训练
某公司去年1~3月份平均每月亏损1.5万元,4~6月份平均每月盈利2万元,7~10月份平均每月盈利1.7万元,11~12月份平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?
注:学生分组讨论练习,教师在巡视过程中,引导、辅导部分基础较差的学生后,各小组进行交流,总结。
四、延伸拓展,巩固内化
例2.(1)若ab=1,则a、b的关系为()
(2)下列说法中正确的个数为( )
0除以任何数都得0
②如果=-
1,那么a是非负数若若⑤(c≠0)⑥()⑦1的倒数等于本身
A 1个B 2个C 3个D 4个
(3)两个不为零的有理数相除,如果交换被除数与除数的关系,它们的商不变( )
A两数相等
B两数互为相反数
C两数互为倒数
D两数相等或互为相反数
喜欢《有理数运算教案推荐》一文吗?“幼儿教师教育网”希望带您更加了解幼儿园教案,同时,yjs21.com编辑还为您精选准备了有理数加法教案专题,希望您能喜欢!