我们听了一场关于“二元一次方程课件”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面。老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据。
二元一次方程课件 篇1
(二)难点
灵活运用代入法的技巧.
(三)疑点
如何“消元”,把“二元”转化为“一元”.
(四)解决办法
一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形:
四、课时安排
一课时.
五、教具学具准备
电脑或投影仪、自制胶片.
六、师生互动活动设计
1.教师设问怎样用一个未知量表示另一个未知量,并比较哪种表示形式更简单,如 等.
2.通过课本中香蕉、苹果的应用问题,引导学生列出一元一次方程或二元一次方程组,并通过比较、尝试,探索出化二元为一元的解方程组的方法.
3.再通过比较、尝试,探索出选一个系数较简单的方程变形,通过代入法求方程组解的办法更简便,并寻找出求解的规律.
七、教学步骤
(-)明确目标
本节课我们将学习用代入法求二元一次方程组的解.
(二)整体感知
从复习用一个未知量表达另一个未知量的方法,从而导入 运用代入法化二元为一元方程的求解过程,即利用代入消元法求二元一次方程组的解的办法.
(三)教学步骤
1.创设情境,复习导入
(1)已知方程 ,先用含 的代数式表示 ,再用含 的代数式表示 .并比较哪一种形式比较简单.
(2)选择题:
二元一次方程组 的解是
A. B. C. D.
【教法说明】 第(1)题为用代入法解二元一次方程组打下基础;第(2)题既复习了上节课的重点,又成为导入 新课的材料.
通过上节课的学习,我们会检验一对数值是否为某个二元一次方程组的解.那么,已知一个二元一次方程组,应该怎样求出它的解呢?这节课我们就来学习.
这样导入 ,可以激发学生的求知欲.
2.探索新知,讲授新课
香蕉的售价为5元/千克,苹果的售价为3元/千克,小华共买了香蕉和苹果9千克,付款33元,香蕉和苹果各买了多少千克?
学生活动:分别列出一元一次方程和二元一次方程组,两个学生板演.
设买了香蕉 千克,那么苹果买了 千克,根据题意,得
设买了香蕉 千克,买了苹果 千克,得
上面的一元一次方程我们会解,能否把二元一次方程组转化为一元一次方程呢,由方程①可以得到 ③,把方程②中的 转换成 ,也就是把方程③代入方程②,就可以得到 .这样,我们就把二元一次方程组转化成了一元一次方程,由这个方程就可以求出 了.
解:由①得: ③
把③代入②,得:
∴
把 代入③,得:
∴
【教法说明】解二元一次方程组与解一元一次方程相比较,向学生展示了知识的发生过程,这对于学生知识的形成十分重要.
上面解二元一次方程组的方法,就是代入消元法.你能简单说说用代入法解二元一次方程组的基本思路吗?
学生活动:小组讨论,选代表发言,教师进行指导.纠正后归纳:设法消去一个未知数,把二元一次方程组转化为一元一次方程.
例1 解方程组
(1)观察上面的方程组,应该如何消元?(把①代入②)
(2)把①代入②后可消掉 ,得到关于 的一元一次方程,求出 .
(3)求出 后代入哪个方程中求 比较简单?(①)yjS21.CoM
学生活动:依次回答问题后,教师板书
解:把①代入②,得
∴
把 代入①,得
∴
如何检验得到的结果是否正确?
学生活动:口答检验.
教师:要把所得结果分别代入原方程组的每一个方程中.
【教法说明】给出例1后提出的三个问题,恰好是学生的思维过程,明确了解题思路;教师板演例1,规范了解二元一次方程组的解题格式;通过检验,可使学生养成严谨认真的学习习惯.
例2 解方程组
要把某个方程化成如例1中方程①的形式后,代入另一个方程中才能消元.方程②中 的系数是1,比较简单.因此,可以先将方程②变形,用含 的代数式表示 ,再代入方程①求解.
学生活动:尝试完成例2.
教师巡视指导,发现并纠正学生的问题,把书写过程规范化.
解:由②,得 ③
把③代入①,得
∴
∴
把 代入③,得
∴
∴
检验后,师生共同讨论:
(1)由②得到③后,再代入②可以吗?(不可以)为什么?(得到的是恒等式,不能求解)
(2)把 代入①或②可以求出 吗?(可以)代入③有什么好处?(运算简便)
学生活动:根据例1、例2的解题过程,尝试总结用代入法解二元一次方程组的一般步骤,讨论后选代表发言.之后,看课本第12页,用几个字概括每个步骤.
教师板书:
(1)变形( )
(2)代入消元( )
(3)解一元一次方程得( )
(4)把 代入 求解
练习:P13 1.(1)(2);P14 2.(1)(2).
3.变式训练,培养能力
①由 可以得到用 表示 .
②在 中,当 时, ;当 时, ,则 ; .
③选择:若 是方程组 的解,则( )
A. B. C. D.
(四)总结、扩展
1.解二元一次方程组的思想: .
二元一次方程课件 篇2
一。教学目标
(一)教学知识点
1、代入消元法解二元一次方程组。
2、解二元一次方程组时的消元思想,化未知为已知的化归思想。
(二)能力训练要求
1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体会数学研究中化未知为已知的化归思想。
(三)情感与价值观要求
1、在学生了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,提高学习数学的信心。
2、培养学生合作交流,自主探索的良好习惯。
二。教学重点
1、会用代入消元法解二元一次方程组。
2、了解解二元一次方程组的消元思想,初步体现数学研究中化未知为已知的化归思想。
三。教学难点
1、消元的思想。
2、化未知为已知的化归思想。
四。教学方法
启发自主探索相结合。
教师引导学生回忆一元一次方程解决实际问题的方法并从中启发学生如果能将二元一次方程组转化为一元一次方程。二元一次方程便可获解,从而通过学生自主探索总结用代入消元法解二元一次方程组的步骤。
五。教具准备
投影片两张:
第一张:例题(记作7。2A);
第二张:问题串(记作7。2B)。
六。教学过程
Ⅰ。提出疑问,引入新课
[师生共忆]上节课我们讨论过一个希望工程义演的问题;没去观看义演的成人有x个,儿童有y个,我们得到了方程组成人和儿童到底去了多少人呢?
[生]在上一节课的做一做中,我们通过检验是不是方程x+y=8和方程5x+3y=34,得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组解的定义得出是方程组的解。所以成人和儿童分别去了5个人和3个人。
[师]但是,这个解是试出来的。我们知道二元一次方程的解有无数个。难道我们每个方程组的解都去这样试?
[生]太麻烦啦。
[生]不可能。
[师]这就需要我们学习二元一次方程组的解法。
Ⅱ。讲授新课
[师]在七年级第一学期我们学过一元一次方程,也曾碰到过希望工程义演问题,当时是如何解的呢?
[生]解:设成人去了x个,儿童去了(8-x)个,根据题意,得:
5x+3(8-x)=
解得x=
将x=5代入8-x=8-5=
答:成人去了5个,儿童去了3个。
[师]同学们可以比较一下:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?
[生]列二元一次方程组设出有两个未知数成人去了x个,儿童去了y个。列一元一次方程设成人去了x个,儿童去了(8-x)个。y应该等于(8-x)。而由二元一次方程组的一个方程x+y=8根据等式的性质可以推出y=8-x。
[生]我还发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相比较,把5x+3y=34中的y用8-x代替就转化成了一元一次方程。
[师]太好了。我们发现了新旧知识之间的联系,便可寻求到解决新问题的方法即将新知识转化为旧知识便可。如何转化呢?
[生]上一节课我们就已知道方程组的两个未知数所包含的意义是相同的。所以将中的①变形,得y=8-x③我们把y=8-x代入方程②,即将②中的y用8-x代替,这样就有5x+3(8-x)=34。二元化成一元。
二元一次方程课件 篇3
一 内容和内容解析
1.内容
二元一次方程, 二元一次方程组概念
2.内容解析
二元一次方程组是解决含有两个提供运算未知数的问题的有力工具,也是解决后续一些数学问题的基础。直接设两个未知数,列方程,方程组更加直观,本章就从这个想法出发引入新内容.
本节课一以引言中的问题开始,引导学生思考“问题中包含的等量关系”以及“设两个未知数后如何用方程表示等量关系”.继而深入探究二元一次方程, 二元一次方程组的解.
本节课的教学重点是:二元一次方程, 二元一次方程组的概念
二、目标和目标解析
1.教学目标
(1)会设两个未知数后用方程表示等量关系列二元一次方程, 二元一次方程组.
(2)理解解二元一次方程, 二元一次方程组的解的概念.
2. 教学目标解析
(1)学生能掌握设两个未知数后,分析问题中包含的等量关系”以及“用方程表示等量关系”.
(2)要让学生经历探究的过程.体会二元一次方程组的解, 二元一次方程组的解是实际意义.
三、教学问题诊断分断
1.学生过去已遇到二元问题,但只设一个未知数,再表示出另一个未知数,用一元一次方程解决. 现在如何引导学生设两个未知数。需要结合实际问题进行分析。由于方程组的两个方程中同一个未知数表示的是同一数量,通过观察对照,可以发现一元一次方程向二元一次方程组转化的思路
2.结合一元一次方程的解向二元一次方程, 二元一次方程组的解转化,学习知识的迁移.
本节教学难点:
1.把一元向二元的转化,设两个未知数.结合实际问题进行分析,列二元一次方程, 二元一次方程组.
2.二元一次方程组的解的意义
四、教学过程设计
1.创设情境,提出问题
问题1 篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?
师生活动:学生回答:能。设胜x场,负(10-x)场。根据题意,得2x+(10-x)=16
x=6,则胜6场,负4场
教师追问:你能根据两个问题中的等量关系设两个未知数列出二个反映题意的方程吗?
师生活动:学生回答:能。设胜x场,负场。根据题意,得x+=10 , 2x+=16.
教师归纳:像这样,每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1的方程叫做二元一次方程。
设计意图:用引言的问题引人本节课内容,先列一元一次方程解决这个问题,转变思路,再列二元一次方程,为后面教学做好了铺垫.
问题2:对比两个方程,你能发现它们之间的关系吗?
师生活动:通过对实际问题的分析,认识方程组中的两个x,都是这个队的胜,负场
数,它们必须同时满足这两个方程,这样,连在一起写成
就组成了一个方程组 。这个方程组中每个方程都含有两个未知数(x和)并且含有未知数的项的次数都是1,像这样的方程组叫做二元一次方程组 。
设计意图:从实际出发,引入方程组的概念,切合学生的认知过程。
问题3 : 探究
满足了方程①,且符合问题的实际意义的x,的值有哪些?把它们填入表中
x
(3) 当 =12时,x的值
师生活动:小组讨论,然后每组各派一名代表上黑板完成.
设计意图:借助本题,充分发挥学生的合作探究精神通过比较,进一步体会二元一次方程及二元一次方程的解的意义.
3加深认识,巩固提高
练习: 一条船顺流航行,每小时行20 ,逆流航行,每小时行16 .求船在静水中的速度和水的流速。
师生活动:分两小组讨论.一组用一元一次方程解决,另一组尝试列方程组(不要求求解),为解二元一次方程组埋下伏笔。然后每组各派一名代表上黑板完成。
设计意图:提醒并指导学生要先分析问题的两个未知数关系,尝试结合题意,寻找到两个等量关系,列方程组。体会直接设两个未知数,列方程,方程组更加直观,
4归纳总结
师生活动:共同回顾本节课的学习过程,并回答以下问题
1.二元一次方程, 二元一次方程组的概念
2.二元一次方程, 二元一次方程组的解的概念.
3.在探究的过程中用到了哪些思想方法?
4.你还有哪些收获?
设计意图:通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生自我归纳概括的能力.
5. 布置作业
教科书第90页第3,4题
五、目标检测设计
1.填表,使上下每对x,的值是方程3x+=5的解
x
2.选择题
二元一次方程组的解为( )
A. B. C. D.
设计意图:考查学生二元一次方程组的解的掌握情况.
二元一次方程课件 篇4
知识要点
1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是一次的整式方程叫做~
2、二元一次方程的解:适合二元一次方程的一组未知数的值叫做这个二元一次方程的一个解;
3、二元一次方程组:由几个一次方程组成并含有两个未知数的方程组叫做二元一次方程组
4、二元一次方程组的解:适合二元一次方程组里各个方程的一对未知数的值,叫做这个方程组里各个方程的公共解,也叫做这个方程组的解(注意:①书写方程组的解时,必需用“”把各个未知数的值连在一起,即写成的形式;②一元方程的解也叫做方程的根,但是方程组的解只能叫解,不能叫根)
5、解方程组:求出方程组的解或确定方程组没有解的过程叫做解方程组
6、解二元一次方程组的基本方法是代入消元法和加减消元法(简称代入法和加减法)
(1)代入法解题步骤:把方程组里的一个方程变形,用含有一个未知数的代数式表示另一个未知数;把这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,可先求出一个未知数的值;把求得的这个未知数的值代入第一步所得的式子中,可求得另一个未知数的值,这样就得到了方程的解
(2)加减法解题步骤:把方程组里一个(或两个)方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数的绝对值相等;把所得到的两个方程的两边分别相加(或相减),消去一个未知数,得到含另一个未知数的一元一次方程(以下步骤与代入法相同)
一、例题精讲
分别用代入法和加减法解方程组
解:代入法:由方程②得:③
将方程③代入方程①得:
解得x=2
将x=2代入方程②得:4-3y=1
解得y=1
所以方程组的解为
加减法:
例2.从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以每小时12公里的速度下山,以每小时9公里的速度通过平路,到学校共用了55分钟,回来时,通过平路速度不变,但以每小时6公里的速度上山,回到营地共花去了1小时10分钟,问夏令营到学校有多少公里?
分析:路程分为两段,平路和坡路,来回路程不变,只是上山和下山的转变导致时间的不同,所以设平路长为x公里,坡路长为y公里,表示时间,利用两个不同的过程列两个方程,组成方程组
解:设平路长为x公里,坡路长为y公里
依题意列方程组得:
解这个方程组得:
经检验,符合题意
x+y=9
答:夏令营到学校有9公里二、课堂小结:
回顾本章内容,总结二元一次方程组的解法和应用。
三、作业布置:
P25A组习题
二元一次方程课件 篇5
教学目标
1、弄懂二元一次方程、二元一次方程组和它们的解的含义,并会检验一对数是不是某个二元一次方程组的解;
2、学会用类比的方法迁移知识;体验二元一次方程组在处理实际问题中的优越性,感受数学的乐趣.
教学难点弄懂二元一次方程组解的含义。
知识重点二元一次方程、二元一次方程组及其解的含义。
教学过程(师生活动)
设计理念
创设情境
导入课题幻灯:古老的“鸡兔同笼问题”
“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”
师:这是我国古代数学著作《孙子算经》中记载的数学名题.它曾在好几个世纪里引起过人们的兴趣,这个问题也一定会使在座的各位同学感兴趣.怎样来解答这个问题呢?
学生思考自行解答,教师巡视.最后,在学生动手动脑的基础上,班级集体讨论给出各种解决方案.
方案一:算术方法
把兔子都看成鸡,则多出94-35×2=24只脚,每只兔子比鸡多出两只脚,故,由此可先求出兔子有24÷2=12只,
进而鸡有35-12=23只.
或类似的也可以先求鸡的数量.
35×4-94=46,46÷2=23
方案二:列一元一次方程解
设有x只鸡,则有(35-x)只兔.根据题意,得
2x十4(35-x)=94.
(解方程略)
教师不失时机地复习一元一次方程的有关概念,“元”是指什么?“次”是指什么?以古老的数学名题引入,可以增强学生的民族自豪感,激发学好数学的感情
能用方案本来解的学生算术功底比较好,应给予高度赞赏.
方案二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好铺垫在。
分析问题(一)讨论二元一次方程、二元一次方程组的概念
师:上面的问题可以用一元一次方程来解,还有其他方法吗?(若学生想不到,教师要引导学生,要求的是两个未知数,能否设两个未知数列方程求解呢?让学生自己设未知数,列方程)
方案三:设有x只鸡,y只兔,依题意得
x+y=35,①
2x+4y=94.②
针对学生列出的这两个方程,提出如下问题:
(1)、你能给这两个方程起个名字吗?
(2)为什么叫二元一次方程呢?
(3)什么样的方程叫二元一次方程呢?
结合学生的回答,教师板书定义1:含有两个未知数,并且未知数的指数都是1的方程,叫做二元一次方程.
师:在上面的问题中,鸡、兔的只数必须同时满足①②两个方程.把①②两个二元一次方程结合在一起,用花括号来连接.我们也给它起个名字,叫什么好呢?
定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.
(二)讨论二元一次方程、二元一次方程组的解的概念
探究活动:满足x+y=35的值有哪些?请填入表中:
教师启发:
(1)若不考虑此方程与上面实际问题的联系,还可以取哪些值?
(2)你能模仿一元一次方程的解给二元一次方程的解下定义吗?
(3)它与一元一次方程的解有什么区别?
定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为
师:那么什么是二元一次方程组的解呢?
学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程.即:既是方程①又是方程②的解.
定义4:二元一次方程组的两个方程的公共解叫做二元一次方程组的解.
比如:从方案一,我们知道,x=23,y=12使方程组中每一个方程成立.所以我们把x=23,y=12叫做
的解记为:
注意:二元一次方程组的解是成对出现的,用花括号来连接,表示“且”.
议一议:将上述“鸡兔同笼”问题的三种方案进行优劣对比,你有哪些想法呢?
引导学生利用一元一次方程进行知识的迁移与奚比,让学生用原有的认知结构去同化新知识,符合建构主义理念
通过探究活动得出结论:
1、二元一次方程的解是成对出现的;2、二元一次方程的解有无
数多个.这与一元一次方程有显
著的区别.
通过对比,让学生体脸到从算术方法到代数方法是一种进步.而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担.
巩固新知例1下列各对数值中是二元一次方程x+2y=2的解是()
ABCD
解法分析:
将A、B,C,D中各对数值逐一代人方程检验是否满足方程,选A,B,C.
变式:其中是二元一次方程组解是()
解法分析:
在例1的基础上,进一步检验A、B、C中各对值是否满足方程2x+y=-2,使学生明确认识到二元一次方程组的解必须同时满足两个方程.
例2(教材102页练习)
解答过程略
本例先检验二元一次方程的解,再检脸二元一次方程组的解,符合从简单到复杂的认知规律.使学生更深刻地理解二元一次方程组的解的概念.
目的在于培养分析等量关系并列方程组的能力;培养观察估算能力;使学生进一步熟悉二元一次方程组及其解的概
小结提高在学生畅所欲言话收获的基础上,通过老师进行补充的方式进行.
本节课学习了哪些内容?你有哪些收获?
(什么叫二元一次方程?什么叫二元一次方程组?什么叫二元一次方程组的解?)发挥学生主体意识,培养学生归纳小结的能力。
布置作业1、必做题:教科书102页习题8.1第1、2题.
2、选做题:教科书102页习题8.1第3题.
3、备选题:
(1)根据下列语句,列出二元一次方程:
①甲数的一半与乙数的.的和为11
②甲数和乙数的2倍的差为17
(2)方程x+2y=7在自然数范围内的解()
A有无数个B有一个C有两个D有三个
(3)若mx+y=1是关于x,y的二元一次方程,那么m
的值应是()
A.m≠OB.m=0C.m是正有理数D.m是负有理数
(4)李平和张力从学校同时出发到郊区某公园游玩,两人从出发到回来所用的时间相同,但是,李平游玩的时间是张力骑车时间的4倍,而张力游玩的时间是李平骑车时间的5倍,请问他俩人中谁骑车的速度快?
不同层次的学生根据自身的需要选择不同的备用题,实现不同的人在数学上获得不同的发展的教学理念.
本课教育评注(课堂设计理念,实际教学效果及改进设想)
本课的设计是从提出“鸡兔同笼”的求解问题人手,激发学生的学习兴趣与民族自豪感,让学生经历从不同角度寻求不同的解决方法的过程,体现出解决问题策略的多样性,激发了学生的学习兴趣.以算术的方法衬托出方程解法的优越性,以列一元一次方程解法衬托出列二元一次方程组解法的优越性,更使学生感到二元一次方程组的引人顺理成章.
本课内容是在学生已经掌握了一元一次方程的基础知识,初步具有提取数学信息、解决实际问题的能力后展开的.根据建构主义理念,学生完全有能力利用自己原有的知识去同化新知识,主动地将其纳人自己的知识体系中.所以本课的通篇整体设计,突出了一元一次方程的样板作用,让学生在类比中,主动迁移知识,建立起新的概念.使得基础知识和基本技能在学生头脑中留下较深刻的印象是很有必要的。
二元一次方程课件 篇6
教学目标:
知识与技能目标:
通过对实际问题的分析,使学生进一步体会方程组是刻画现实世界的有效数学模型,初步掌握列二元一次方程组解应用题.初步体会解二元一次方程组的基本思想“消元”。
培养学生列方程组解决实际问题的意识,增强学生的数学应用能力。
过程与方法目标:
经历和体验列方程组解决实际问题的过程,进一步体会方程(组)是刻画现实世界的有效数学模型。
情感态度与价值观目标:
1.进一步丰富学生数学学习的成功体验,激发学生对数学学习的好奇心,进一步形成积极参与数学活动、主动与他人合作交流的意识.
2.通过"鸡兔同笼",把同学们带入古代的数学问题情景,学生体会到数学中的"趣";进一步强调课堂与生活的联系,突出显示数学教学的实际价值,培养学生的人文精神。重点:
经历和体验列方程组解决实际问题的过程;增强学生的数学应用能力。
难点:
确立等量关系,列出正确的二元一次方程组。
教学流程:
课前回顾
复习:列一元一次方程解应用题的一般步骤
情境引入
探究1:今有鸡兔同笼,
上有三十五头,
下有九十四足,
问鸡兔各几何?
“雉兔同笼”题:今有雉(鸡)兔同笼,上有35头,下有94足,问雉兔各几何?
(1)画图法
用表示头,先画35个头
将所有头都看作鸡的,用表示腿,画出了70只腿
还剩24只腿,在每个头上在加两只腿,共12个头加了两只腿
四条腿的是兔子(12只),两条腿的是鸡(23只)
(2)一元一次方程法:
鸡头+兔头=35
鸡脚+兔脚=94
设鸡有x只,则兔有(35-x)只,据题意得:
2x+4(35-x)=94
比算术法容易理解
想一想:那我们能不能用更简单的方法来解决这些问题呢?
回顾上节课学习过的二元一次方程,能不能解决这一问题?
(3)二元一次方程法
今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
(1)上有三十五头的意思是鸡、兔共有头35个,
下有九十四足的意思是鸡、兔共有脚94只.
(2)如设鸡有x只,兔有y只,那么鸡兔共有(x+y)只;
鸡足有2x只;兔足有4y只.
解:设笼中有鸡x只,有兔y只,由题意可得:
鸡兔合计头xy35足2x4y94
解此方程组得:
练习1:
1.设甲数为x,乙数为y,则“甲数的二倍与乙数的一半的和是15”,列出方程为_2x+05y=15
2.小刚有5角硬币和1元硬币各若干枚,币值共有六元五角,设5角有x枚,1元有y枚,列出方程为05x+y=65.
合作探究
探究2:以绳测井。若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。绳长、井深各几何?
题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5尺;如果将绳子折成四等份,一份绳长比井深多1尺。问绳长、井深各是多少尺?
找出等量关系:
解:设绳长x尺,井深y尺,则由题意得
x=48
将x=48y=11。
所以绳长4811尺。
想一想:找出一种更简单的创新解法吗?
引导学生逐步得出更简单的方法:
找出等量关系:
(井深+5)×3=绳长
(井深+1
解:设绳长x尺,井深y尺,则由题意得
3(y+5)=x
4(y+1)=x
x=48
y=11
所以绳长48尺,井深11尺。
练习2:甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速为x米/秒,乙速为y米/秒,则可列方程组为(B).
归纳:
列二元一次方程解决实际问题的一般步骤:
审:审清题目中的等量关系.
设:设未知数.
列:根据等量关系,列出方程组.
解:解方程组,求出未知数.
答:检验所求出未知数是否符合题意,写出答案。
二元一次方程课件 篇7
教学目标:
1.会用加减消元法解二元一次方程组.
2.能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组.
3.了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法.
教学重点:
加减消元法的理解与掌握
教学难点:
加减消元法的灵活运用
教学方法:
引导探索法,学生讨论交流
教学过程:
一、情境创设
买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?
设苹果汁、橙汁单价为x元,y元。
我们可以列出方程3x+2y=23
5x+2y=33
问:如何解这个方程组?
二、探索活动
活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?
2、这些方法与代入消元法有何异同?
3、这个方程组有何特点?
解法一:3x+2y=23①
5x+2y=33②
由①式得③
把③式代入②式
33
解这个方程得:y=4
把y=4代入③式
则
所以原方程组的解是x=5
y=4
解法二:3x+2y=23①
5x+2y=33②
由①—②式:
3x+2y-(5x+2y)=23-33
3x-5x=-10
解这个方程得:x=5
把x=5代入①式,
3×5+2y=23
解这个方程得y=4
所以原方程组的解是x=5
y=4
把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法,简称加减法.
三、例题教学:
例1.解方程组x+2y=1①
3x-2y=5②
解:①+②得,4x=6
将代入①,得
解这个方程得:
所以原方程组的解是
巩固练习(一):练一练1.(1)
例2.解方程组5x-2y=4①
2x-3y=-5②
解:①×3,得
15x-6y=12③
②×3,得
4x-6y=-10④
③—④,得:
11x=22
解这个方程得x=2
将x=2代入①,得
5×2-2y=4
解这个方程得:y=3
所以原方程组的解是x=2
y=3
巩固练习(二):练一练1.(2)(3)(4)2
四、思维拓展:
解方程组:
五、小结:
1、掌握加减消元法解二元一次方程组
2、灵活选用代入消元法和加减消元法解二元一次方程组
六、作业
习题10.31.(3)(4)2
二元一次方程课件 篇8
【教学目标】
知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。
过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。
情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。
【教学重点、难点】
重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
【教学过程】
一、 复习引入:
(1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?
(2) 合作学习:
①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?
这个问题中有几个未知数,能列一元一次方程求解吗?
如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?
②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?
二、 新课教学
这就是我们今天要学习的4、1二元一次方程(板书课题)
(1) 观察上述两个方程,归纳特点
(2) 讨论选择正确概念
① 含有两个未知数的方程叫二元一次方程。
② 含有两个未知数,且含有未知数的项的次数都是1次的`方程叫二元一次方程。
(3) 做一做P86——1,2
(4) 例:已知方程3x+2y=10
① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)
② 求当x=-2,0,3时,对应的y的值
(提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?
回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。
同理试写出该方程的两个解(注意写法格式)
思考:方程3x+2y=10的解有多少个?
师归纳:二元一次方程解具不定性和相关性
(5) 练习:P88——课内练习1,2
(6) 补充练习:P89---作业题4(说明:方程的解须是正整数)
已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?
(说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学
生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原
题要求高了,其实有利于各类学生参与并寻求结论。
三、 课堂小结:
二元一次方程的意义及二元一次方程的解的概念(注意书写格式)
二元一次方程解的不定性和相关性
会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式
四、 作业 :
课堂作业本
二元一次方程课件 篇9
教学建议
1.教材分析
(1)知识结构
(2)重点、难点分析
重点:本小节的重点是使学生学会用加减法解二元一次方程组.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样的,但运用这项知识(这里也表现为一种方法),有时可以简捷地求出二元一次方程组的解,因此学生同样会表现出一种极大的兴趣.必须充分利用学生学会这种方法的积极性.加减(消元)法是解二元一次方程组的基本方法之一,因此要让学生学会,并能灵活运用.这种方法同样是解三元一次方程组和某些二元二次方程组的基本方法,在教学中必须引起足够重视.
难点:灵活运用加减法的技巧,以便将方程变形为比较简单和计算比较简便,这也要通过一定数量的练习来解决.
2.教法建议
(1)本节是通过一个引例,介绍了加减法解方程组的基本思想和解题过程.教学时,要引导学生观察这个方程组中未知数系数的特点.通过观察让学生说出,在两个方程中y的系数互为相反数或在两个方程中x的系数相等,让学生自己动脑想一想,怎么消元比较简便,然后引出加减消元法.
(2)讲完加减法后,课本通过三个例题加以巩固,这三个例题是由浅入深的,讲解时也要先让学生观察每个方程组未知数系数的特点,然后让学生说出每个方程组的解法,例题1老师自己板书,剩下的两个例题让学生上黑板板书,然后老师点评.
(3)讲解完本节后,教师应引导学生比较代入法与加减法这两种方法,这两种方法虽有不同,但实质都是消元,即通过消去一个未知数,把“二元”转化为“一元”.也就是说:
这时学生对解题方法比较熟悉,但还没有上升到理论的高度,这时教师应及时点拨、渗透化归转化的思想,并指出这是具有普遍意义的分析问题、解决问题的思想方法.?
教学设计示例
(第一课时)
一、素质教育目标
(一)知识教学点
二元一次方程课件 篇10
【教学目标】
【知识目标】
了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
【能力目标】
通过讨论和练习,进一步培养学生的观察、比较、分析的能力。
【情感目标】
通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
【重点】
二元一次方程组的含义
【难点】
判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【教学过程】
一、引入、实物投影
1、师:在一望无际呼伦贝尔大草原上,一头老牛和一匹小马驮着包裹吃力地行走着,老牛喘着气吃力地说:“累死我了”,小马说:“你还累,这么大的个,才比我多驮2个”老牛气不过地说:“哼,我从你背上拿来一个,我的包裹就是你的2倍!”,小马天真而不信地说:“真的?!”同学们,你们能否用数学知识帮助小马解决问题呢?
2、请每个学习小组讨论(讨论2分钟,然后发言)
这个问题由于涉及到老牛和小马的驮包裹的两个未知数,我们设老牛驮x个包裹,小马驮y个包裹,老牛的包裹数比小马多2个,由此得方程x-y=2,若老牛从小马背上拿来1个包裹,这时老牛的包裹是小马的2倍,得方程:x+1=2(y-1)
师:同学们能用方程的方法来发现、解决问题这很好,上面所列方程有几个未知数?含未知数的项的次数是多少?(含有两个未知数,并且所含未知数项的次数是1)
师:含有两个未知数,并且含未知数项的次数都是1的方程叫做二元一次方程
注意:这个定义有两个地方要注意①、含有两个未知数,②、含未知数的次数是一次
练习(投影)
下列方程有哪些是二元一次方程
+2y=1xy+x=13x-=5x2-2=3x
xy=12x(y+1)=c2x-y=1x+y=0
二、议一议、
师:上面的方程中x-y=2,x+1=2(y-1)的x含义相同吗?y呢?
师:由于x、y的含义分别相同,因而必同时满足x-y=2和x+1=2(y-1),我们把这两个方程用大括号联立起来,写成
x-y=2
x+1=2(y-1)
像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
如:2x+3y=35x+3y=8
x-3y=0x+y=8
三、做一做、
1、x=6,y=2适合方程x+y=8吗?x=5,y=3呢?x=4,y=4呢?你还能找到其他x,y值适合x+y=8方程吗?
2、X=5,y=3适合方程5x+3y=34吗?x=2,y=8呢?
你能找到一组值x,y同时适合方程x+y=8和5x+3y=34吗?
x=6,y=2是方程x+y=8的一个解,记作x=6同样,x=5
y=2y=3
也是方程x+y=8的一个解,同时x=5又是方程5x+3y=34的一个解,
y=3
四、随堂练习(P103)
五、小结:
1、含有两未知数,并且含有未知数的项的次数是一次的整式方程叫做二元一次方程。
2、二元一次方程的解是一个互相关联的两个数值,它有无数个解。
3、含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值。
二元一次方程课件 篇11
(第1课时)
【学习目标】
1.知道用方程组解决实际问题的一般步骤.
2.会找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】
重点 :会用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
(第2课时)
【学习目标】
1.体会一题多解,学习从多种角度考虑问题.
2.读懂并找出简单的实际问题中的数量关系,列出方程组,得出问题的解答.
【重点难点】
重点:会从多种角度考虑用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
【学前准备】
1.小麦、玉米两种作物的单位面积产量的比是1:1.5,你能说明它的含义吗?(可以举例说明)
2.“甲、乙两种作物的总产量的比是3 : 4”是什么意思?
3.总产量与哪些量有关?
4. 阅读课本106页探究2, 按题的要求你能有几种 方法划分这块土地,请你试着画出草图并思考:本题中有哪些等量关系?
(第3课时)
【学习目标】
1.体会方程组是解决含有多个未知数问题的重要工具.
2.读懂并能找出实 际问题中的各种形式表达的数量关系,列出方程组,得出问题的解答.
【重点难点】
重点:用列方程组的方法解决实际问题.
难点:会找出简单的实际问题中的数量关系.
《8.3再探实际问题与二元一次方程组》课堂练习题
1.(怀化中考)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同,2月份、5月份他的跳远成绩分别是4.1 m,4.7 m,则小明1月份的跳远成绩为3.9m,每个月增加的距离为0.2m.
知识点2 利用二元一次方程组的解做决策
2.(娄底中考)假如娄底市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.
小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”
小李说:“我乘出租车从市政府到娄底火车站走了6.5千米,付车费14.5元.”
问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?
(2)小张乘出租车从市政府到娄底南站(高铁站)走了5.5千米,应付费多少元?
3.为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.
(1)小张家2016年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?
(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.
《8.3实际问题与二元一次方程组》同步练习题
14.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好全部配套组成GH型产品.
(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?请列出二元一次方程组解答此问题.
(2)为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置.1.设原来每天安排x名工人生产G型装置,后来补充m名新工人,求x的值(用含m的代数式表示)2.请问至少需要补充多少名新工人才能在规定期内完成总任务?
二元一次方程课件 篇12
教学目标
1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。
2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型20xx年-20xx学年七年级数学下册全册教案(人教版)20xx年-20xx学年七年级数学下册全册教案(人教版)。
3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。
教学重点
1.列二元一次方程组解简单问题。
2.彻底理解题意
教学难点
找等量关系列二元一次方程组。
教学过程
一、情境引入。
小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?
二、建立模型。
1.怎样设未知数?
2.找本题等量关系?从哪句话中找到的?
3.列方程组。
4.解方程组。
5.检验写答案。
思考:怎样用一元一次方程求解?
比较用一元一次方程求解,用二元一次方程组求解谁更容易?
三、练习。
1.根据问题建立二元一次方程组。
(1)甲、乙两数和是40差是6,求这两数。
(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。
(3)已知关于求x、y的方程,
是二元一次方程。求a、b的值。
2.P38练习第1题。
四、小结。
小组讨论:列二元一次方程组解应用题有哪些基本步骤?
五、作业。
P42。习题2.3A组第1题。
后记:
2.3二元一次方程组的应用(2)
幼儿教师教育网的幼儿园教案频道为您编辑的《2024二元一次方程课件》内容,希望能帮到您!同时我们的二元一次方程课件专题还有需要您想要的内容,欢迎您访问!