幼儿教师教育网,为您提供优质的幼儿相关资讯

有理数教案

发布时间:2024-08-27 有理数教案

有理数教案锦集6篇。

俗话说,不打无准备之仗。作为人民教师,我们会认真负责对每一堂课做好准备,为了将学生的效率提上来,老师会准备一份教案,教案有助于老师在之后的上课教学中井然有序的进行。你知道如何去写好一份优秀的幼儿园教案呢?或许你正在查找类似"有理数教案锦集6篇"这样的内容,希望能帮助到你,请收藏。

有理数教案 篇1

1、注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。

2、本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。

3、数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标1、知识与技能:使学生在了解有理数乘法的意义的基础上,掌握有理数乘法法则,并初步掌握有理数乘法法则的合理性。

3、情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点有理数乘法的.运算。

一、复习引入1.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

2.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

3.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?

有理数教案 篇2

《有理数教学设计

九龙县 湾坝中学 王永红 教学目标 知识与技能:

说出有理数的意义以及有理数的分类和0在分类中的作用。 过程与方法:

树立对数分类讨论的观点并发展正确地进行分类的能力。 情感、态度与价值观:

通过有理数的分类,感受数学对称美。 重点、难点

1.重点:有理数包括哪些数。 2.难点:有理数的分类。 教学思路

这节课主要教学内容是有理数的分类,讲解时要启发引导,充分体现学生为主体,注重学生参与意识。

教学过程

(一)复习导入 (出示投影1) 1.把下列各数填入相应的大括号内:

2,,0,-4,-,7,-,3 +6,正数集合负数集合2.填空:

 

(1)若下降5 m记作-5 m,那么上升8 m记作__________________,不升不降记作_____________________。

(2)如果规定+20表示收入20元,那么-10元表示______________。

(3)如果由A地向南走3千米用3千米表示,那么-5千米表示____________________,在A地不动记作__________________。

【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。

师:在小学大家学过1,2,3,4……这是什么数呢? 生:自然数。 师:在这些自然数前面加上负号,如-1,-2,-3,-4……这些是什么数呢?

生:负数。

师:具体叫什么负数呢?

师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。

【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。

(二)探索新知,讲授新课 1.分类数的名称

1,2,3,4……叫做正整数;

-1,-2,-3,-4……叫做负整数。 0叫做零。

812152,3,(即5)……叫做正分数; 16133)……叫做负分数; 2,7,(即4正整数、负整数和零统称为整数。 正分数和负分数统称为分数。 整数和分数统称有理数。即

有理数整数正整数、负整数和零

分数正分数、负分数【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。

提出问题:巩固概念 (出示投影2)

(1)0是整数吗?是正数吗?是有理数吗? (2)-5是整数吗?是负数吗?是有理数吗? (3)自然数是整数吗?是正数吗?是有理数吗?

【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。

注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。

2.有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:

(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类

尝试反馈,巩固练习 (出示投影3)

131下列有理数中:-7,,6,89,0,-,5.

哪些是整数?哪些是分数?哪些是正数?哪些是负数? 学生思考,然后找同学逐一回答.其他同学准备补充或纠正。 【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。

3.数的集合

我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

(三)变式训练,培养能力 (出示投影4)

2317(1)把有理数,-9,3,+10,4,-,-1,3,-,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

正整数集合正分数集合,负整数集合,负分数集合 

11(2)把下列有理数:-3,+8,2,+,0,3,-10,5,-填入相应的集合:

整数集合正数集合,分数集合,负数集合 

【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。

(四)归纳小结

师:今天我们一起学习了哪些内容? 由学生自己小结,然后教师再总结: 今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。

【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。

(五)反馈检测 (出示投影5)

(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。

(2)把下列各数填入相应集合的持号内: -3,4,-,0,,-7 整数集合:正有理数集合:,分数集合:,负分数集合:



(4)选择题:-100不是( )

A.有理数; B.自然数; C.整数; D.负有理数。 以小组为单位计分,积分最高的组为优胜组.

【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

布置作业

思考题:把下列各数填在相应的集合中 ,-5,0,89,-,+1001 有理数集合:非负有理数集合:负有理数集合:板书设计

一、复习引入

二、探索新知

三、变式训练

四、归纳小结

五、反馈检测

教学反思

1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。

2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。



 

有理数教案 篇3

《有理数》

教学设计

成安县

辛义乡徐村中学

温丽芬

教学目标 知识与技能:

1.说出有理数的意义。 2.把给出的有理数按要求分类。 3.说出数0在有理数分类中的作用。 过程与方法:

树立对数分类讨论的观点并发展正确地进行分类的能力。 情感、态度与价值观:

通过有理数的分类,感受数学对称美。 重点、难点、疑点及解决办法 1.重点:有理数包括哪些数。 2.难点:有理数的分类。 3.疑点:明确有理数分类标准。 教具准备

投影仪、自制胶片。 教学设计思路

这节课主要教学内容是有理数的分类,讲解时要启发引导,充分体现学生为主体,注重学生参与意识。

教学过程设计

(一)复习导入 (出示投影1)

1.把下列各数填入相应的大括号内:

1+6,12222,,0,-4,-,7,-,3

正数集合 负数集合2.填空:



(1)若下降5 m记作-5 m,那么上升8 m记作__________________,不升不降记作_____________________。

(2)如果规定+20表示收入20元,那么-10元表示______________。

(3)如果由A地向南走3千米用3千米表示,那么-5千米表示____________________,在A地不动记作__________________。

【教法说明】出示投影后,学生思考,然后举手回答问题。当学生回答完一题后。教师追问:你能不能说说什么叫正数,负数呢?0是正数吗?是负数吗?通过第1小题,使学生进一步理解正、负数的概念,以及零的特殊意义。通过第2小题使学生掌握对于两种相反意义的量,如果其中一种量用正数表示,那么另一种量便可以用负数表示。

师:在小学大家学过1,2,3,4„„这是什么数呢? 生:自然数。

师:在这些自然数前面加上负号,如-1,-2,-3,-4„„这些是什么数呢? 生:负数。

师:具体叫什么负数呢?

师:今天我们要把大家学过的数分类命名,然后给一个统一的名称。

【教法说明】通过教师由浅入深层层设问,使学生在头脑当中逐步认识问题。这样一步一个台阶的教学过程,符合学生认识问题的一般规律。

(二)探索新知,讲授新课 1.分类数的名称

1,2,3,4„„叫做正整数; -1,-2,-3,-4„„叫做负整数。 0叫做零。

812152,3,(即5)„„叫做正分数; 16133)„„叫做负分数; 2,7,(即4正整数、负整数和零统称为整数。 正分数和负分数统称为分数。 整数和分数统称有理数。即

整数正整数、负整数和零

有理数分数正分数、负分数【教法说明】以上内容由师生共同参与完成,教师启发诱导,遵循了由具体到抽象的认识规律。

提出问题:巩固概念 (出示投影2)

(1)0是整数吗?是正数吗?是有理数吗? (2)-5是整数吗?是负数吗?是有理数吗? (3)自然数是整数吗?是正数吗?是有理数吗?

【教法说明】这三道小题主要是检查学生对概念的理解。新授过程中随时设计习题进行反馈练习,以便调节回授。

注意:有时为了研究的需要,整数也可以看作是分母为1的分数,这时分数包括整数,本章中的分数是指不包括整数的分数。

2.有理数的分类

为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类方法也常常不同,常用的有以下两种:

(1)先把有理数按“整”和“分”来分类,再把每类按“正”与“负”来分类,如下表:

(2)先把有理数按“正”和“负”来分类,再把每类按“整”和“分”来分类 尝试反馈,巩固练习 (出示投影3)

131下列有理数中:-7,,6,89,0,-,5.

哪些是整数?哪些是分数?哪些是正数?哪些是负数? 学生思考,然后找同学逐一回答.其他同学准备补充或纠正。

【教法说明】通过此题,检查学生对有理数分类的掌握情况,通过对有理数进行分类,培养学生树立对数分类讨论的观点和正确地进行分类的能力。

3.数的集合

我们曾经把所有正数组成的集合,叫做正数集合,所有的负数组成的集合叫做负数集合。同样把所有整数组成的集合叫做整数集合;把所有分数组成的集合叫做分数集合;把所有有理数组成的集合叫做有理数集合。

(三)变式训练,培养能力 (出示投影4)

2317(1)把有理数,-9,3,+10,4,-,-1,3,-,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

正整数集合正分数集合,负整数集合,负分数集合 

11(2)把下列有理数:-3,+8,2,+,0,3,-10,5,-填入相应的集合:

整数集合正数集合,分数集合,负数集合 

【教法说明】学生思考后,动笔完成上述第(1)题。一个学生在黑板上板演,其他学生做在练习本上,然后师生共同订正.从中进一步培养学生分类能力。第(2)题采用分组计分形式,充分调动学生学习数学的积极性,增强学生集体荣誉感。

(四)归纳小结

师:今天我们一起学习了哪些内容? 由学生自己小结,然后教师再总结:

今天我们一起学习了有理数的定义和两种分类方法.要能正确地判断一个数属于哪一类,要特别注意“0”不是正数,但是整数。

【教法说明】课堂小结,采取学生小结的办法,让学生积极参与教学活动,归纳出本节课所学的知识。再由教师归纳总结,帮助全体学生进一步明确本节课的重点和应达到的目标。

(五)反馈检测 (出示投影5)

(1)整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。

(2)把下列各数填入相应集合的持号内: -3,4,-,0,,-7 整数集合:正有理数集合:,分数集合:

,负分数集合:

(4)选择题:-100不是(

A.有理数;

B.自然数;

C.整数;

D.负有理数。 以小组为单位计分,积分最高的组为优胜组.

【教法说明】通过反馈检测,既使学生巩固本节课所学内容,又调动学生学习的积极性和主动性,增强学生积极参与教学活动的意识和集体荣誉感。

布置作业

思考题:把下列各数填在相应的集合中 ,-5,0,89,-,+1001 有理数集合:非负有理数集合:负有理数集合:板书设计



 

有理数教案 篇4

1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:(1)____+6=20;      (2)20+____=17;(3)____+(-2)=-20;           (4)(-20)+___=-6.

问题1  (1)4-(-3)=______ ;(2)4+(+3)=______.

教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2  (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

例1  计算:(1)9 -(-5);  (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-;(6)15-(6-9)

例2  世界上最高的'山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?

例4  15℃比5℃高多少? 15℃比-5℃高多少?

练一练: P63. 1题  P64-65数学理解1、问题解决1、联系拓广1、2题.

补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

(5)0-6;  (6)6-0;    (7)0-(-6); (8)(-6)-0.

2.计算:(1)16-47;    (2)28-(-74);   (3)(-37)-(-85);    (4)(-54)-14;

(5)123-190;  (6)(-112)-98;  (7)(-131)-(-129);   (8)341-249.

3.计算:(1)(3-10)-2;  (2)3-(10-2); (3)(2-7)-(3-9);

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

有理数教案 篇5

①理解并掌握有理数减法法则,能熟练的进行有理数的减法运算。

②探索把减法运算转化为加法运算的过程,进一步体会转化思想。

(1)通过21页的小云朵里的内容你知道如何列式吗?

(2)观察课本22页“探究”的内容,你能从中有什么新发现?请同学们换几个数再试一试。

(4)通过自学课本第22页例4,你认为有理数减法计算的具体步骤是什么呢?

数,两个相等的数相减差是你能举出一些例子吗?

自学课本后,组长带领小组成员,核对(1)(2)(3)(4)(5)题,讨论交流,集思广益,相信你们会学有所获。

①比3℃低20℃的`温度是多少?

②比-10℃低31.5℃的温度是多少?

①0-(-52) ②(+2)-(-8)③(4/3)-(4/3) ④(4.6)-7.8

三、成功测学(冲刺检测,相信我最棒!)

2、计算:

①|-3|-7?? ②7.3-(-6.8)? ③(-2.5)-0.5? ④0-(-)

①如果两个数的差是正数,那么这个数都是正数;②两个数的差不一定小于这两个数的和;③两个数的差一定小于被减数;④零减去任何数都等于这个数的相反数。

————————————————————————————

有理数教案 篇6

四则混合运算教学设计

一、混合运算

2、学生尝试列式,并交流:

3、运算顺序:

5、结合两题引导学生总结:在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法。

二、巩固练习:

2、下面的运算对吗?把不对的'改正过来。(题略)

2、(第5题)分析“我们组比你们两组的总人数多6人”,指名说说“你们两组的总人数”怎么算?

3、(第6题)比较两小题,说说两题的联系。

4、把这3道联系实际问题做在作业本上。

第一、二、三单元测试

三、教学小括号的混合运算:

3、同桌分别练习第2题的两组题,练习完后互相检查。全班交流。

四、(含有小括号的混合运算2)

2、添上括号,使下面的等式成立:

2、书上的第8题,学生读题,说说这题所涉及的数量关系式:

6. 总结含有中括号的混合运算的运算顺序。

板书设计:

2、第2题:你能直接在每组得数大的算式后面画“√”吗?

3、(3+3)+3÷3=6+3÷3=9÷3=3

三、布置作业:【ZFW152.cOm 趣祝福】

p.42第6、7、8题

其中第7、8题要求学生写出基本的数量关系式。

Yjs21.Com更多幼儿园教案扩展阅读

有理数教案8篇


想要了解“有理数教案”的最新动态栏目小编已经为你收集了。老师在上课前需要有教案课件,只要课前把教案课件写好就可以。要知道一份完整的教案课件,可以避免忘记教学过程的知识点。烦请您关注本文内容!

有理数教案 篇1

有理数大班教案主题范文:

有理数的引入

一、教学目标

1. 理解和掌握有理数的概念;

2. 能正确运用有理数的运算规则;

3. 能将实际问题转化为有理数的表示并解决问题;

4. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重难点

1. 有理数的定义和性质;

2. 有理数的运算规则。

三、教学准备

1. 教师准备有理数的教学课件、实例题和习题;

2. 学生准备课本、笔记本。

四、教学过程

1. 导入

教师出示一段视频,视频中展示了一个划圆规、直尺和米尺的实验,引导学生思考实验的结果,提出问题:你们知道为什么我们把直尺上的刻度分为厘米呢?

学生讨论一下,可以得出直尺上的刻度是有理数。

引导学生了解实数的划分重要性及其相关概念。

2. 引入

通过巧妙地引入实数的划分,教师引导学生概括出有理数的概念,引进有理数的概念。

3. 提出问题

教师提出以下问题:

(1)负整数、零和正整数都是什么数?

(2)两个有理数相加(减)的结果怎样?

(3)两个有理数相乘(除)的结果怎样?

4. 学习

(1)有理数的定义

教师对有理数进行定义,包括整数的定义、正数和负数的定义,同时解释零的定义。

(2)有理数的绝对值

教师引导学生了解绝对值的概念,并介绍绝对值的性质。

(3)有理数的大小关系

教师通过实例,引导学生掌握有理数的大小关系及其性质。

5. 练习

(1)基本运算

教师出示基本运算实例,让学生进行计算,并帮助学生理解加法、减法、乘法和除法的运算规则。

(2)解决实际问题

教师出示一些实际问题,让学生通过将其转化为有理数的表示进行解决,培养学生的解决问题的能力。

6. 归纳总结

教师引导学生总结有理数的概念、性质和运算规则。

7. 拓展延伸

教师介绍无理数的概念,与有理数进行对比,引发学生对实数的思考与讨论。

8. 课堂小结

教师与学生一起总结本节课的重点、难点,并夯实学生对有理数概念和运算规则的理解。

五、课后作业

1. 完成课后习题,巩固有理数的运算规则;

2. 准备参与下节课的讨论。

有理数教案 篇2

数学有理数的除法优秀教案

从实际生活引入,体现数学知识源于生活及数学的现实意义。

强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算

学生归纳导出法则

(一):除以一个数等于乘以这个数的倒数

小组合作交流探究发现结果

教师强调

(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。

(2)此法则是有理数的除法运算的又一种 方法。

学生自己观察回忆,进行自主学习和合作交流, 得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)

激发学生学习的积极性和主动性满足学生的表现欲和探究欲)

强化练习课本 例2计算 :

(1)(- )÷(-6)÷(- )

(2)( - )÷(- )

学生试着独立完成有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。

反馈矫正

课本69—70页第1、2、3题学生独立完成并小组互评巩固法则,调动学生积极性

归纳小节1、学习内容:倒数的概念及求法;有理数的`除法

(二)、通过本节的学习,你有哪些体会?请与同学交流。

同学之间进行交 流,小结本节内容培养了学生总结问题的能力

作业布置 必做题:课本70页第1,3,4题

选做题:若ab≠0,则 可能的取值是_______.综合考查,学以致用。不同的学生得到不同的发展

板书设计

2.9 有理数的除法

例1计算: 练习处:

例2 计算:

教学反思:

《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了 探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力 。

在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。

有理数教案 篇3

教师:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.

于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).

这里用到正数和负数的加法,这样的加法怎样进行运算呢?下面就让我们一起来探讨1.3.1有理数的加法(一)。

1、看下面的问题:

一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作− 5m;如果物体先向右移动 5m,再向右移动 3m,那么两次运动后总的结果是什么?

学生: 两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8

教师: 如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?

教师:对于这个问题,可以用数轴来分析,我们把数轴的原点作为第一次运动的起点,第二次运动的起点是第一次运动的终点,有第二次运动的终点与原点的相对位置得出两次运动的结果.

教师:如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?

学生:两次运动后物体从起点向右运动了 2m,写成算式就是5+(−3) = 2

2、探究:

利用数轴,求以下情况时物体两次运动的结果;

(1)先向右运动3 m,再向左运动5 m,物体从起点向____运动了_____m .

(2)先向右运动5 m,再向左运动5 m,物体从起点向____运动了_____m .

(3)先向左运动5 m,再向右运动5 m,物体从起点向____运动了_____m .

教师:同学们,请你们自己利用数轴进行分析,完成填空.

教师:教师巡视,帮助有困难的学生,了解各小组自主学习的进展情况。

学生1:(第一组)依次填:(1)左;-2;(2)没走;0;(3)没走;0。

学生2:(第二组)(1)左;-2;(2)左或右;0;(3)左或右;0。

学生:因为向右运动5 m记作5 m,向左运动5 m记作-5 m,两次运动的结果是5+(-5)=0。

教师:说得真好!那第一题和第三题用算式怎样表示?

有理数教案 篇4

教学目标

1.了解有理数加法的意义,理解有理数加法法则的合理性;

2.能运用有理数加法法则,正确进行有理数加法运算;

3.经历探索有理数加法法则的过程,感受数学学习的方法;

4.通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力.

教学重点

能运用有理数加法法则,正确进行有理数加法运算.

教学难点

经历探索有理数加法法则的过程,感受数学学习的方法.

教学过程(教师)

一、创设情境

小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

1.试一试

甲、乙两队进行足球比赛.如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球.

你能把上面比赛的过程及结果用有理数的算式表示出来吗?

做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表:

2.我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流.

你还能举出一些应用有理数加法的实际例子吗?

二、探究归纳

1.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

2.把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上.

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

3.把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

请用数轴和算式分别表示以上过程及结果:

算式:________________________

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果.

4.观察、思考、讨论、交流并得出有理数加法法则.

讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

《2.5有理数的加法与减法》课时练习

1.七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?

2.一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.

(1)通过计算说明小虫是否回到起点P.

(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.

2.5有理数的加法与减法:同步练习

1.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)

+17,-9,+7,-15,-3,+11,-6,-8,+5,+16

(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?

(2)养护过程中,最远外离出发点有多远?

(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?

有理数教案 篇5

[教学目标]

1、使学生理解有理数除法的意义,掌握有理数除法法则,会进行有理数除法运算;

2、运用转化思想,理解有理数除法的意义,培养学生新旧知识之间联系的思维能力,通过乘除法之间的逆运算,培养学生逆向思维的能力,提高学生的'计算能力,培养转化和全面分析问题的能力、

[教学重点、难点]

1、教学重点:正确运用有理数除法法则进行有理数除法运算;

2、教学难点:理解零不能做除数,零没有倒数,寻找有理数除法转化为有理数乘法的方法和条件;

3、疑点:乘除法运算顺序、

[教学过程设计]

一、课前复习提问

1、有理数乘法法则;

2、有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律;

3、倒数的意义、

二、讲授新课

(一)有理数除法法则的推导

[问题]怎样计算8(—4)呢?

[提问]小学学过的除法的意义是什么?

得出 ①8(—4)=—2;又②8( )=—2;

有理数教案 篇6

有理数混合运算练习题

1?判断题::

(1)两个数相加,和一定大于任一个加数?

(2两个数相加,和小于任一个加数,那么这两个数一定都是负数?

(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号

(4)两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和

(5)两数差一定小于被减数?

(6)零减去一个数,仍得这个数?

(7)两个相反数相减得0?

(8)两个数和是正数,那么这两个数一定是正数?

(9)若a,b同号,则a+b=|a|+|b|? ( )

(10)若a,b异号,则a+b=|a|-|b|? ( )

(11)若a<0、b<0,则a+b=-(|a|+|b|)? ( )

(12)若a,b异号,则|a-b|=|a|+|b|? ( )

(13)若a+b=0,则|a|=|b|? ( )

2?填空题:

(1)一个数的绝对值等于它本身,这个数一定是____.一个数的倒数等于它本身,这个数一定____=一个数的相反数等于它本身,这个数是_____?

(2)若a<0,那么a和它的相反数的差的绝对值是____?

(3)若|a|+|b|=|a+b|,那么a,b的关系是_____?

(4)若|a|+|b|=|a|-|b|,那么a,b的关系是____?

3、(1)当b>0,时,a,a-b,a+b,哪个最大?哪个最小?

(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?

计算题

??1??1??5?????5????2????12???(?60)????????。

?9917?918

4??2??1?1???3????1????1???7??3??14?6

?13??2215?34??(?13)???343737

???7111?11????36?????59126????

14(?81)?2??(?16)49

选择题

1.下列说法正确的`是 ( )

(A)两个负数相加,绝对值相减

(B)正数加正数,和为正数;正数加负数,和为零

(C)正数加零,和为正数;负数加负数,和为负数

(D)两个有理数相加,等于把它们的绝对值第一文库网相加

2.已知甲、乙两个数都是有理数,那么甲数减去乙数所得的差与甲数比较,必为( )

(A)差一定小于甲数

(B)差一定大于甲数

(C)差不能大于甲数

(D)大小关系取决于乙是什么样的数

3.若|x|=3,|y|=2,且x>y,则x+y的值为 ( )

(A)1或-5 (B)1或5

(C)-1或5 (D)-1或-5

4.若|a|+a=0,则 ( )

(A)a>0 (B)a

5.已知x+y=0,|x|=5。那么样子|x?y|等于 ( )

(A)0 (B)10

(C)20 (D)以上答案都不对

3216.8与7的倒数和的相反数是 ( ) ?(A)正整数 (B)正分数 (C)负整数 (D)负分数

7.下列各式中,没有意义的式是 ( )

(A)0-2 (B)0÷2 (C)2÷0 (D)0×2

8.已知a?b?|a?b|,则有

(A)a?b?0 (B)a?b?0

(C)a>0,b

b?0a9.若,则一定有 ( )

(A)a=0 (B)b=0且a≠0

(C)a=b=0 (D)a=0或b=0

10.如果一个数除以这个数的绝对值的商为-1,那么这个数一定是 ( )

(A)正数 (B)负数

(C)+1或-1 (D)除零外的有理数

8888888811.8?8?8?8?8?8?8?8? ( )

(A)64 (B)8 (C)8 (D)9

12.两个数之和为负,积为正,则这两个数位应是 ( ) 864964

(A)同为负数 (B)同为正数

(C)是一正一负 (D)有一个是0

13.若a是负有理数,则?a3是 ( )

(A)正有理数 (B)负有理数 (C)非正有理数 理数

D)非负有(

有理数教案 篇7

三维目标

一、知识与技能

掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。

二、过程与方法

通过例题学习,发展学生观察、归纳、猜想、推理等能力。

三、情感态度与价值观

体验获得成功的感受、增加学习自信心。

教学重、难点与关键

1.重点:能正确地进行有理数的加、减、乘、除、乘方的混合运算。

2.难点:灵活应用运算律,使计算简单、准确。

3.关键:明确题目中各个符号的意义,正确运用运算法则。

四、课堂引入

1.我们已经学习了哪几种有理数的运算?

2.有理数的乘方法则是什么?

五、新授

下面的算式里有哪几种运算?

3+5022(-)-1 ①

这个算式里,含有有理数的加、减、乘、除、乘方五种运算,按怎样的顺序进行运算?

有理数的混合运算,应按以下运算顺序进行:

1.先乘方,再乘除,最后加减;

2.同级运算,从左往右进行;

3.如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

例如上面①式

3+5022(-)-1

=3+504(-)-1

=3+50(-)-1

=3--1

=-

例3:计算:(1)2(-3)3-4(-3)+15;

(2)(-2)3+(-3)[(-4)2+2]-(-3)2(-2)。

分析:分清运算顺序,先乘方,再做中括号内的运算,接着做乘除,最后做加减。计算时,特别注意符号问题。

解:(1)原式=2(-27)-(-12)+15

=-54+12+15

=-27

(2)原式=-8+(-3)(16+2)-9(-2)

=-8+(-3)18-(-4.5)

=-8-54+4.5=-57.5

例4:观察下面三行数:

-2,4,-8,16,-32,64,①

0,6,-6,18,-30,66, ②

-1,2,-4,8,-16,32, ③

(1)第①行数按什么规律排列?

(2)第②、③行数与第①行数分别有什么关系?

(3)取每行数的第10个数,计算这三个数的和。

分析:(1)第行数,从符号看负、正相隔,奇数项为负数,偶数项为正数,从绝对值看,它们都是2的乘方。

有理数教案 篇8

教学目标

让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。

教学重点和难点

重点:加减运算法则和加法运算律。

难点:省略加号与括号的代数和的计算。

课堂教学过程

一、从学生原有认知结构提出问题

什么叫代数和?说出-6+9-8-7+3两种读法。

二、讲授新课

1.计算下列各题:

2.计算:

(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;

(7)-6-8-2+3.54-4.72+16.46-5.28;

3.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:

(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;

(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;

(9)(a-c)-(b-d);(10)a-c-b+d.

请同学们观察一下计算结果,可以发现什么规律?

a-(b+c)=a-b-c;

a-(b+c+d)=a-b-c-d;

a-(b-d)=a-b+d;

(a+b)-(c+d)=a+b-c-d;

(a-c)-(b-d)=a-c-b+d.

括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。

4.用较简便方法计算:

(4)-16+25+16-15+4-10.

三、课堂练习

1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:

(1)两个数相加,和一定大于任一个加数.()

(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()

(3)两数和大于一个加数而小于另一个加数,那么这两数一定是异号.()

(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()

(5)两数差一定小于被减数.()

(6)零减去一个数,仍得这个数.()

(7)两个相反数相减得0.()

(8)两个数和是正数,那么这两个数一定是正数.()

2.填空题:

(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。

(2)若a<0,那么a和它的相反数的差的绝对值是______.

(3)若|a|+|b|=|a+b|,那么a,b的关系是______.

(4)若|a|+|b|=|a|-|b|,那么a,b的关系是______.

(5)-[-(-3)]=______,-[-(+3)]=______.

这两组题要求学生自己分析,判断题中错的应举出反例,同时要求符号语言与文字叙述语言能够互化。

四、作业

1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:

(1)a+b-c;(2)a-b+c;(3)-a+b-c;(4)-a-b+c.

2.分别根据下列条件求代数式x-y-z+w的值:

(1)x=-3,y=-2,z=0,w=5;

(2)x=0.3,y=-0.7,z=1.1,w=-2.1;

3.已知3a=a+a+a,分别根据下列条件求代数式3a的值:

(1)a=-1;(2)a=-2;(3)a=-3;(4)a=-0.5.

4.(1)当b>0时,a,a-b,a+b,哪个最大?哪个最小?

(2)当b<0时,a,a-b,a+b,哪个最大?哪个最小?

5.判断题:对的在括号里打“√”,错的在括号里打“×”,并举出反例。

(1)若a,b同号,则a+b=|a|+|b|.()

(2)若a,b异号,则a+b=|a|-|b|.()

(3)若a<0、b<0,则a+b=-(|a|+|b|).()

(4)若a,b异号,则|a-b|=|a|+|b|.()

(5)若a+b=0,则|a|=|b|.()

6.计算:(能简便的应当尽量简便运算)

课堂教学设计说明

1.本课时是习题课.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能。讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正。

2.关于“去括号法则”,只要求学生了解,并不要求追究所以然。

有理数教案精选


俗话说,手中无网看鱼跳。。身为一位人民教师,我们都希望孩子们能学到知识,一般来说,提升学生的效率最好是准备一份教案,提前准备好教案可以有效的提高课堂的教学效率。那么,你知道的幼儿园教案要怎么写呢?下面是小编精心整理的"有理数教案精选",为方便后续阅读,请你收藏本文。

有理数教案【篇1】

教学目的:

1.了解计算器的性能,并会操作和使用;

2.会用计算器求数的平方根;

重点:

用计算器进行数的加、减、乘、除、乘方和开方的计算;

难点:

乘方和开方运算;

教学过程:

1.计算器的使用介绍(科学计算器)

初一上册数学一单元教案.png

2.用计算器进行加、减、乘、除、乘方、开方运算

例1用计算器求下列各式的值.

(1)(-3.75)+(-22.5)(2)51.7(-7.2)

解(1)

初一上册数学一单元教案.png

(-3.75)+(-22.5)=-26.25

(2)

初一上册数学一单元教案.png

51.7(-7.2)=-372.24

说明输入数据时,按键顺序与写这个数据的顺序完全相同,但输入负数时,符号转换键要放在数据之后键入.

随堂练习

用计算器求值

1.9.23+10.22.(-2.35)×(-0.46)

答案1.37.82.1.081

有理数教案【篇2】

第一章 有理数

课题:1.1 正数和负数(1)

【学习目标】:1、掌握正数和负数概念;

2、会区分两种不同意义的量,会用符号表示正数和负数;

3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念

【导学指导】:

一、知识链接:

1、小学里学过哪些数请写出来: 、 、 。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答下面提出的问题:

3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

二、自主学习

1、正数与负数的产生

(1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子: 。

(2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个+(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上(读作负)号来表示,如上面的3、8、47。

(2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.

(3)阅读P3练习前的内容

3、正数、负数的概念

1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:

1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数: , ,3.14,+3065,0,-239;

则正数有_____________________;负数有____________________。

4.下列结论中正确的是 ( )

A.0既是正数,又是负数 B.O是最小的正数

C.0是最大的负数 D.0既不是正数,也不是负数

5.给出下列各数:-3,0,+5, ,+3.1, ,20xx,+20xx;

其中是负数的有 ( )

A.2个 B.3个 C.4个 D.5个

【要点归纳】:

正数、负数的概念:

(1)大于0的数叫做 ,小于0的数叫做 。

(2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【拓展训练】:

1.零下15℃,表示为_________,比O℃低4℃的温度是_________。

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.

3.甲比乙大-3岁表示的意义是______________________。

4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

【总结反思】:

课题:1.1正数和负数(2)

【学习目标】:

1、会用正、负数表示具有相反意义的量;

2、通过正、负数学习,培养学生应用数学知识的意识;

【学习重点】:用正、负数表示具有相反意义的量;

【学习难点】:实际问题中的数量关系;

【导学指导】

一、知识链接.

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________ 来分别表示它们。

问题:零为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明。

参考例子:温度表示中的零上,零下和零度。

二.自主探究

问题:(课本第4页例题)

先引导学生分析,再让学生独立完成

例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%, 德国增长1.3%,

法国减少2.4%, 英国减少3.5%,

意大利增长0.2%, 中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率;

解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ ;

2)六个国家20xx年商品进出口总额的增长率:

美国___________ 德国__________

法国___________ 英国__________

意大利__________ 中国__________

有理数教案【篇3】

1.4.1有理数的乘法(第一课时)

1.教材分析

1.1教材的地位与作用

教材借助归纳验证的数学思想,结合学生已有知识,得出不同情况下两个有理数相乘的结果,进而归纳出两个有理数相乘的乘法法则。然后通过具体例子说明如何具体运用法则进行计算。接下来,从含有几个正数与负数相乘的具体实例出发,归纳出积的符号与各因数的符号的关系。同时,指出了“几个数相乘,有一个因数是0,积为0”的规律。

1.2教材的重难点分析 1.2.1教学重点

运用有理数乘法法则正确进行计算。 1.2.2教学难点

有理数乘法法则的探索过程,符号法则及对法则的理解。 2.教学目标分析 2.1知识与技能

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算,并初步理解有理数乘法法则的合理性;

2.2过程与方法

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。 2.3 情感态度与价值观

通过教材给出的气温变化问题,让学生认识到数学来源于实践并反作用于实践。 3.学情分析

本节课是学生在小学本已学过正数与零的乘法运算,在中学已引进了负有理数以及学过有理数的加减运算之后进行的。因此,在探索有理数乘法法则的过程中,学生会比较容易找出规律,对于几个不为0的有理数相乘,学生也容易抓住其运算的两步骤,即先定符号,再将绝对值相乘。

附:板书设计

“有理数乘法法则”的教学设计,一般有两类:一是列举简单事例,尽快给出法则,组织学生用较多的是练习法则、背法则,以求熟练地掌握和运用法则;另一类是让学生体验法则的探索过程,注重培养学生的观察问题、发现问题的能力,猜测,验证的能力。引入部分以及归纳、有理数相乘的法则

前一类可能会取得较好的近期效果,但只注重知识技能的培养,忽视了学生数学能力的培养

有理数乘法两步骤 练习处

和发展;后者不仅重视了学生思维能力及素质的培养,还能提高学生的学习兴趣。本数学设计采用的是较为适中的方法,没有教材中引入的那么繁琐,但同时兼顾了上述两类设计的优点。

“有理数乘法法则”的教学,在性质上属于定义教学,看似容易,但实际上却是难教又难学。半课例采用的是让学生观察、实践、合作探讨、发现的探索式学习方法,引导学生独立思考,合作交流,体验数学问题解决的过程,学会如何归纳和总结。

“有理数乘法法则”的教学中,必须解决的3个难点是:如何自然地引入带有负数的乘法;怎样体现负负得正的合理性与必要性;怎样说明有理数与1和0相乘的结果。

在整个教学过程中,教师始终注意运用多种形式调动学生的学习积极性和主动性,以自主学习、合作交流的方式,把学习的主动权交给了学生,使学生成为学习的主体,激发学习积极性。通过小组比赛和个人抢答,既培养了合作精神,又增强了竞争意识。

在数学教学中,不仅要求学生掌握基础知识的应用技能,而且要重视对学生的数学思维

方法和创造思维能力的培养。学习从数学的角度提出问题、理解问题。体验问题解决的过程,使学生在学习中感受成功的喜悦,建立自信心,从而积极参加与数学学习活动,激发学生强烈的求知欲。

有理数教案【篇4】

一、知识与技能

理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算、

二、过程与方法

经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力、

三、情感态度与价值观

体会数学与现实生活的联系,提高学生学习数学的兴趣、

教学重点、难点与关键

1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、

2、难点:省略括号和加号的加法算式的运算方法、

3、关键:理解加减混合运算可以统一成加法,?以及正确理解省略加号的有理数加法形式、教具准备

投影仪、

四、教学过程

一、复习提问,引入新课

1、叙述有理数的加法、减法法则、

2、计算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);

(4)(—8)—6;(5)5—14、

五、新授

我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、

六、巩固练习

1、课本第24页练习、

(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、

原式=1+3—4—0。5=0—0。5=—0。5

(2)题运用加减混合运算律,同号结合、

原式=—2。4—4。6+3。5+3。5=—7+7=0

(3)题先把加减混合运算统一为加法运算、

原式=(—7)+(—5)+(—4)+(+10)

=—7—5—4+10(省略括号和加号)

=—16+10

=—6

七、课堂小结

有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加、总之要认真观察,灵活运用运算律、

八、作业布置

1、课本第25页第26页习题1、3第5、6、13题、

九、板书设计:

第四课时

1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、

归纳:加减混合运算可以统一为加法运算、

用式子表示为a+b—c=a+b+(—c)、

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思

本课教学反思

本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。

这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。

在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。

有理数教案【篇5】

1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:(1)____+6=20;      (2)20+____=17;(3)____+(-2)=-20;           (4)(-20)+___=-6.

问题1  (1)4-(-3)=______ ;(2)4+(+3)=______.

教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

思考:减法可以转化成加法运算.但是,这是否具有一般性?

问题2  (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

例1  计算:(1)9 -(-5);  (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-;(6)15-(6-9)

例2  世界上最高的'山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?

例4  15℃比5℃高多少? 15℃比-5℃高多少?

练一练: P63. 1题  P64-65数学理解1、问题解决1、联系拓广1、2题.

补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

(5)0-6;  (6)6-0;    (7)0-(-6); (8)(-6)-0.

2.计算:(1)16-47;    (2)28-(-74);   (3)(-37)-(-85);    (4)(-54)-14;

(5)123-190;  (6)(-112)-98;  (7)(-131)-(-129);   (8)341-249.

3.计算:(1)(3-10)-2;  (2)3-(10-2); (3)(2-7)-(3-9);

4.当a=11,b=-5,c=-3时,求下列代数式的值:

(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

习题2.6知识技能1、3、4题。

本节课内容较为简单,学生掌握良好,课上反应热烈。

有理数教案【篇6】

有理数的除法是一种基本的有理数运算,它的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除法的混合运算,以及知道0不能作除数的规定和刚学过的有理数乘法的基础上进行的,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。

本节课的教学目标:

1、通过对有理数除法法则的探求,理解有理数除法法则,会进行有理数的除法运算。

2、会求有理数的倒数(特别是负数的倒数)。

3、通过把有理数的除法运算转化为乘法培养学生的转化思想。本节课的重点:熟练进行有理数的除法。

说课内容:有理数的除法运算,会求一个负数的倒数,难点是熟练掌握有理数的除法,难点的突出关键点在运算时,先确定商的符号,然后再根据不同情况采取适当的方法来求商的绝对值。因而教学时,让学生通过求实例理解有理数,除法与小学除法基本相同,只是增加了符号的变化。根据本节教材内容和学生的实际水平,为了更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用探求,发现,讲练相结合的教学方法。本节课的教学过程如下:

一、导入

1、复习有理数的乘法法则,为新课的讲解作为铺垫。

2、提出已知两个因数的积和其中一个因数,求另一个因数用什么运算,引出有理数的除法。

二、新课讲授

1、探究:由12/3是什么意思,商是几?引到(-12)/(-3)是什么意思?从而由已学的除法是乘法的逆运算得出(-12)/(-3)=4,或从除以一个数等于乘以另一个数的倒数考虑,把除法转化成乘法来计算。

2、接着由一组有理数除法题目,先计算然后通过引导学生观察比较每题的除数,被除数的符号,绝对值与商的符号,绝对值的关系,总结出规律,得出有理数的法则1,并提醒学生注意0不能作除数。

3、再准备两组题目让学生练习,通过练习加深对法则的理解及加强运算的能力。

4、通过课本中的做一做,比较每组算式的关系,总结出规律得到有理数除法法则2,并指出如何根据具体情况来选择这两个法则再根据法则2及做一做中第1题并结合小学时求正数的倒数的方法,归纳得出求负数的倒数的方法,并指出0没有倒数。

三、巩固提高

通过练习,让学生的新知识得到巩固,并纠正错误。

四、总结反思

让学生感受本节课所学的有哪些知识,本节课的知识点。

五、检测反馈

根据课后习题,选择适当的题目作为课堂作业,让学生更加熟练掌握本节课的知识。

板书设计:

1、 有理数除法法则。

2、 倒数的求法。

有理数教案【篇7】

有理数的乘除法

一、教学目标

知识与技能:

①使学生在了解乘法的基础上,掌握有理数乘法法则并初步掌握有理数乘法法则的合理性。

②会进行有理数乘法运算。

③了解有理数的倒数定义,会求一个数的倒数。

过程与方法:

①经历探索有理数乘法法则,发展,观察,归纳,猜想,验证的能力以及培养学生的语言表达能力。

②提高学生的运算能力

情感与态度:通过合作学习调动学生学习的积极性,激发学生学习数学的兴趣,提高学生认识世界的水平。

二、 教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法中的符号法则.

三、教学过程

(一) 创设问题情景,激发学生的求知欲望,复习旧知,导入新课

前面我们学习了有理数的加减法,接下来就应该学习有理数的乘除法.同学们先看下面的问题:甲水库的水位每天升高3㎝,乙水库的水位每天下降3㎝。4天后,甲、乙水库各自水位的总变化量是多少?

如果用正号表示水位的上升、用负号表示水位的下降。那么,4天后,甲水库水位的总变化量是:3+3+3=34=12㎝

乙水库水位的总变化量是:(-3)+(-3)+(-3)+(-3)=(-3)4=-12㎝引出课题:有理数的乘法

(二)学生探索新知,归纳法则

学生分为四个小组活动,进行乘法法则的探索

设蜗牛现在的位置为点O,若它一直都是沿直线爬行,而且每分钟爬行2cm,问:

(1)向右爬行,3分钟后的位置?

(2)向左爬行,3分钟后的位置?

(3)向右爬行,3分钟前的位置?

(4)向左爬行,3分钟前的位置?

(学生思考后回答) 要确定蜗牛的位置需要知道:距离和方向。

为了区分方向:我们规定向右为正,向左为负;为区分时间:我们规定现在的时间前为负,现在的时间后为正。

(1) 情形一:蜗牛在现在位置的右边6㎝处。式子表示为:

(+2)(+3)=+6

数轴表示如右:

(2)情形二:蜗牛在现在位置的左边6㎝处。式子表示为: (-2)3=-6

数轴表示如右:

(3)情形三:蜗牛在现在位置的左边6㎝处。式子表示为: (+2)(-3)=-6

数轴表示如右

(4)情形四:蜗牛在现在位置的右边6㎝处。式子表示为: (-2)(-3)=+6

数轴表示如右:

仔细观察上面得到的四个式子:

(1)(+2)(+3)=+6

(2)(-2)3=-6

(3)(+2)(-3)=-6

(4)(-2)(-3)=+6

根据你对乘法的思考,你得到什么规律?

(三)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)(+)=( ) 同号得

(-)(+)=( ) 异号得

(+)(-)=( ) 异号得

(-)(-)=( ) 同号得

b.任何数与零相乘,积仍为 。

(四)师生共同用文字叙述有理数乘法法则。

归纳:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与0相乘,积仍为0。

(五) 运用法则计算,巩固法则。

例1计算:(1) (-5) (2) (-7) (3) (-3) (4)(-3) (- )

引导学生观察、分析例1中(4)小题两因数的关系,得出:有理数中仍然有:乘积是1的两个数互为倒数.

例2. 见课本P30页

(六)分层练习,巩固提高。

(1)计算(口答):

① ② ③ ④

⑤ ⑥ ⑦ ⑧

四.课题小结

(1)有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同0相乘,都得0。

(2)如何进行两个有理数的乘法运算: 先确定积的符号,再把绝对值相乘,当有一个因数为零时,积为零。

五.作业布置

课本P30页练习1,2,3.

1.4.2 有理数的乘法

(第2课时)

一、教学目标:

1、经历探索多个有理数相乘的符号确定法则.

2、会进行有理数的乘法运算.

3、通过对问题的探索,培养观察、分析和概括的能力.

二、教学重点和难点

学习重点:多个有理数乘法运算符号的确定

学习难点:正确进行多个有理数的乘法运算

三、教学过程

(一)、学前准备

请同学们先合作做个游戏: 用9张扑克牌(可以替代的纸片也行)全部反面向上放在桌上,每次翻动其中任意2张(包括已翻过的牌),使它们从一面向上变为另一面向上,这样一直做下去,看看能否使所有的牌都正面向上?

结果怎么样,你能明白其中的数学道理吗?

(二)、探究新知

1、观察:下列各式的积是正的还是负的?

234(-5),

23(-4)(-5),

2(3) (4)(-5),

(-2) (-3) (-4) (-5).

思考:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

分组讨论交流,再用自己的语言表达所发现的规律:

几个不是0的数相乘,负因数的个数是 偶数 时,积是正数;负因数的个数是 奇数 时,积是负数.

2、利用所得到的规律,看看翻牌游戏中的数学道理。

(三)、新知应用

1、例题3,(30页)例3,

请你思考,多个不是0的数相乘,先做哪一步,再做哪一步?你能看出下列式子的结果吗?如果能,理由 几个数相乘,如果其中又因数为0,积等于0

例:7.8(-8.1)O (-19.6)

师生小结:几个数相乘,如果其中又因数为0,积等于0

2、练习

计算

1)、58(7)(0.25) 2)、

四、课堂小结

1、通过这节课的学习,我的感受是:几个数相乘,如果其中又因数为0,积等于0

五.作业布置

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积( )

A.一定为正 B.一定为负 C.为零 D. 可能为正,也可能为负

2.若干个不等于0的有理数相乘,积的符号( )

A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定

3.下列运算结果为负值的是( )

A.(-7)(-6) B.(-6)+(-4); C.0 (-2)(-3) D.(-7)-(-15)

4.下列运算错误的是( )

A.(-2)(-3)=6 B.

C.(-5)(-2)(-4)=-40 D.(-3)(-2)(-4)=-24

二、计算 1、(-7.6) 2、 .

1.4.3 有理数的乘法

(第3课时)

一、教学目标:

1、熟练有理数的乘法运算并能用乘法运算律简化运算.

2、让学生通过观察、思考、探究、讨论,主动地进行学习.

3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程.

二、教学重点和难点

教学重点:正确运用运算律,使运算简化

教学难点:运用运算律,使运算简化

三、教学过程

一、学前准备

1、下面两组练习,请同学们选择一组计算.并比较它们的结果:

1)(-7)8 8(-7)

[(-2)(-6)]5 (-2)[(-6)5]

2)(- )(- ) (- )(- )

[ (- )](-4) [(- )(-4)]

3)

请以小组为单位,相互检查,看计算对了吗?

二、探究新知

1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流.

2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?

3、归纳、总结

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

三、新知应用

1、例题

用两种方法计算 ( + - )12

2、看谁算得快,算得准

1)(-7)(- ) 2) 9 15.

四、课堂小结

怎么样,这节课有什么收获,还有那些问题没有解决?

乘法交换律:两个数相乘,交换因数的位置,积 相等 .

即:ab= ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 相等

即:(ab)c= a(bc)

乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加

即:a(b+c)=ab+bc

五.作业布置

1、(-85)(-25) 2、(- )15(-1 );

3、( ) 4、 (7).

5、-9(-11)+12(-9) 6、

1.4.4 有理数的除法

(第4课时)

一、教学目标:

1、理解除法是乘法的逆运算;

2、掌握除法法则,会进行有理数的除法运算;

3、经历利用已有知识解决新问题的探索过程.

二、教学重点和难点

教学重点:有理数的除法法则

教学难点:理解商的符号及其绝对值与被除数和除数的关系

三.教学过程

(一)、学前准备

1、师生活动

1)、小明从家里到学校,每分钟走50米,共走了20分钟.

问小明家离学校有 1000 米,列出的算式为 50 20=1000 .

2)放学时,小明仍然以每分钟50米的速度回家,应该走 20 分钟.

列出的算式为 1000 =20

从上面这个例子你可以发现,有理数除法与乘法之间的关系互为逆运算

(二)、合作交流、探究新知

1、小组合作完成

比较大小:8(-4) 8(一 );

(-15)3 (-15)

(一1 )(一2) (-1 )(一 )

再相互交流、并与小学里学习的乘除方法进行类比与对比,归纳有理数的除法法则:1)、除以一个不等于0的数,等于 乘这个数的倒数.

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

2,运用法则计算:

(1)(-15)(-3); (2)(-12)(一 ); (3)(-8)(一 )

3,师生共同完成P34例5.

(三)1、练习:P35

2、P35例6、例7、

3、练习: P36第1、2题

四.课堂小结

通过这节课的学习,你的收获是:

1)、除以一个不等于0的数,等于 乘这个数的倒数.

2)、两数相除,同号得 正 ,异号得 负 ,并把绝对值相 加减 ,0除以任何一个不等于0的数,都得 0 .

五.作业布置

1、计算

(1)(+48)(+6); (2) ;

(3)4(-2); (4)0(-1000).

2、计算.

(1)(-1155)[(-11)(+3)(-5)]; (2)375

1、P39第1、2、3、4题

1.4.5有理数的除法

(第5课时)

一、教学目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

二、教学重点和难点

1、学习重点:有理数的混合运算

2、学习难点:运算顺序的确定与性质符号的处理

三、教学过程

(一)、学前准备

1、计算

1)(0.0318)(1.4) 2)2+(8)2

(二)、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。

3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、186(2) 2)11+(22)3(11)

3)(0.1) (100)

四.课堂小结:请你回顾本节课所学习的主要内容:

1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

2、计算器的使用。

五、作业 1、P39第7题(4、5、7、8)、 第8题

有理数教案【篇8】

教学目标

1,掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

2,了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

3,体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类

知识重点正确理解有理数的概念

教学过程(师生活动)设计理念

探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出)。

问题1:观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况。

学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励。

例如,对于数5,可这样问:5和5.1有相同的类型吗?5可以表示5个人,而5。1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5.1不是整个的数,称为“正分数。(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数’。按照书本的说法,得出“整数”“分数”和“有理数”的概念。

看书了解有理数名称的由来。

“统称”是指“合起来总的名称”的意思。

试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

有理数教案【篇9】

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.

如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

(1)计算(-2)+(-3).

在方框中放进2个 和3个 :

因此,(-2)+(-3)= -5.

思考: 两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的'符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

(三)验证明确结论:

例1 计算下列算式的结果,并说明理由:

(1) 180 +(-10) (2) (-10)+(-1);

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(7) 0+(+2); (8) 0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7); (2)(-13)+5;

全班学生书面练习,四位学生板演,教师对学生板演进行讲评.

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2. 有理数加法法则及其应用。

3. 注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

有理数教案【篇10】

1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流。

2,教科书第10页练习。

此练习中出现了集合的概念,可向学生作如下的说明。

把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集。类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号。

思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?也可以教师说出一些数,让学生进行判断。集合的概念不必深入展开。

创新探究

问题2:有理数可分为正数和负数两大类,对吗?为什么?

教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

有理数这个分类可视学生的程度确定是否有必要教学。

应使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等

小结与作业

课堂小结

到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

本课作业

(1)必做题:教科书第18页习题1、2第1题

(2)教师自行准备本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,本课在引人了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不要过多展开。

2,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性;同时还体现合作学习、交流、探究提高的特点,对学生分类能力的养成有很好的作用。

3,两种分类方法,应以第一种方法为主,第二种方法可视学生的情况进行。

初中数学教学策略

一、激发学生的学习兴趣

兴趣是最好的老师。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。虽然我国素质教育已经开展多年了,但是许多教师在讲课的时候还是很难进行启发式教学,往往将本来应该是十分生动的内容,以“填鸭式、满堂灌”的方式讲述。因此,教师一定要注意激发学生的学习兴趣,在讲授知识时多考虑一下自己讲授的知识以及教授的方法能否引发学生的兴趣。

激发学生的学习兴趣,教师可以做到以下几点:(1)设置问题情境,让学生积极思考,提高学生独立思考问题的能力,培养学生的逻辑思维能力。(2)利用多媒体进行教学。随着科学技术的进步,多媒体教学已经得到了普遍发展。通过多媒体教学教师可以将抽象的数学符号、枯燥的数学定理、复杂的证明过程呈现出来。这样就可以使学生获得一定感性思维。(3)向学生讲述一下关于数学的小知识或者是小故事,激发学生的学习兴趣。

比如,冀教版初中数学八年级上册第十六章的知识点是勾股定理,教师在讲勾股定理这一章时,可以向学生讲述一下古代人是怎样发现勾股定理的,或者是向学生讲述一下古代人是怎样将数学知识运用到生活中去的。再比如,第十五章的知识点是轴对称,教师可以列举一些体现轴对称特点的中国古代建筑物,比如说故宫的建筑模式。

二、建立民主平等的师生关系

素质教育要求师生之间是一种民主平等的关系,师生双方在教学内容上是传递与接受的关系;在人格上是平等关系;在社会道德上是相互促进的关系。教师在日常教学过程中一定要充分发扬民主,建立和谐的师生关系。比如,在数学课堂上,有学生认为教师有的地方讲的不对,然后在全班同学面前给教师提了出来。在这种情况下,教师应该大度宽容,首先应该表扬学生积极思考问题,其次,仔细考虑自己是否真的出错了。最后,如果有错要及时改正。在初中数学教学过程中,教师应该充分调动学生的积极性和主动性,形成互动、互惠的师生关系。

三、建立多元化的教学目标

教学目标具有激励、导向、评价作用,对教师的教学和学生的学习都具有十分重要的作用。教师在设置数学教学目标的时候,要注意将知识与能力、过程与方法、情感态度与价值观紧密结合起来。数学教学不仅要注意问题的解决,也要关注学生的思维过程。教师要成为学生学习的指导者和促进者,不仅要注重学习的结果,更要注重学生学习的过程。教师要合理运用教学方法教学方法的设计应该遵循多样性、灵活性、综合性、创新性的原则。在选择教学方法时,教师应该依据教学规律和教学原则。

除此之外,教师在选择教学方法时要依据学生的学习特点,要符合学生的身心发展规律。同时还要依据教学的组织形式、时间、设备条件进行教学方法的选择。由于中学生的注意力还不是特别集中,在一节课中只运用一种教学方法会使学生产生疲惫和倦怠,因此,教师在讲授过程中应该综合运用多种教学方法,以引起学生的注意力和积极性。比如,在学习《命题与证明》这一章时,教师应该采用讲授法、谈话法、练习法等,这样既可以使学生掌握一定的新知识又能够及时掌握新知识,同时又激发了学生学习的积极性和主动性。教师在教学中应多采用启发式教学。所谓启发式教学就是教师要承认学生的主体地位,充分调动学生的学习积极性和主动性,引导学生独立思考、积极探索,生动活泼地学习,自觉地掌握科学知识,提高分析问题、解决问题的能力。初中教师在教学过程中,一定要时刻注意启发学生的思维。这样才能够激发学生的学习兴趣,使课堂变得生动、有趣。只有当学生对数学产生了极大兴趣的时候,教师所传授的知识才能够很快被学生吸收。

四、总结

综上所述,在初中数学教学过程中要运用恰当、科学的教学策略。教师一定要根据学生的实际情况,根据教材的具体内容制定科学的教学策略,以提高教学质量和学生学习的质量。教师在进行教学时一定要遵循直观性原则、因材施教原则、理论联系实际原则、科学性等原则。教学策略是多种多样的,比如激发学生的学习兴趣;树立多元化的教学目标;建立民主平等的师生关系等。教师一定要跟随教育改革的步伐,跟随时代的潮流,积极探索教学之路,提升数学教学水平,培养出高素质的学生。

找质数课件教案(集锦6篇)


宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案(集锦6篇),欢迎你参考,希望对你有所助益!

找质数课件教案 篇1

1、使学生理解质数和合数的概念,能正确地判断一个数是质数还是合数。

2、培养学生观察、比较、抽象、慨括的能力。

3、知道100以内的质数,熟悉20以内的质数。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

理解质数、合数的含义,能正确快速地判断一个数是质数还是合数。

能运用一定的方法,从不同的角度判断、感悟质数与合数。

课前谈话:

给教室里的人分类。体会:同样的事物,依据不同的分类标准,可以有多种不同的分类方法。明确:分类的标准很重要。

一、复习旧知

给自然数分类。根据自然数是不是2的倍数,把自然数可以分成奇数和偶数两类。

说明:这是一种有价值的分类方法,在以后的学习中很有用。

问:想不想学一种新的分类方法?关于新的分类方法,你想知道些什么?

二、进行新课

今天我们就用找因数的方法来给自然数分类。

复习:什么叫因数?怎样找一个数所有的因数?

小组合作:找出列举的各数的所有的因数。

引导学生观察:观察以上各数所含的因数的个数,你能把它们分成几种情况‘!

根据学生的回答板书。

自然数

(因数的个数)

(只有两个因数)(有3个或3个以上的因数)

引导学生思考:只含有两个因数的`,这两个因数有什么特点?引出因数的概念。

明确合数的概念.提问:合数至少有几个因数?

想一想:1的因数有哪几个?它是质数吗?它是合数吗?

明确:这是一种新的分类方法。

猜一猜:质数有多少个?合数呢?

明确:因为自然数的个数是无限的,所以,质数和合数的个数也是无限的。

三、组织趣味游戏

20以内的同学请起立,我们比比看,谁的反应快。

(1)你的学号如果是20以内的质数,请你往前一步。

(2)请你们将20以内的质数,按照从小到大的顺序排列起来。

(3)你的学号如果20以内的合数,请你后退一步。

(4)(询问学号是1的同学)你为什么两次都没动?

四、动手操作,制质数表。(教学例1)

出示P14例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的质数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除。学生操作后,提问:剩下的都是什么数?

(4)学生在组内制作质数表。

(5)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。

告诉学生:古代的数学家就是用这样的方法来找质数的。

小结方法:同学们运用“排除”的方法,筛选出了100以内的质数。

五、练习巩固

1、找出下面各数的因数的个数,指出哪些是质数哪些是合数,再用质数表检查。

22293549517983

学生独立完成。

问:你是怎么判断的?

明确:可以找出每个数所有的因数,再根据质数和合数的意义来判断;一个数,只有找到1和它本身以外的第三个约束,就能判断这个数是合数还是质数。不必找出所有的因数来,这样可以提高判断的效率。

说明:判断一个数是不是质数还可以查表。100以内的质数比较常用,看书本上的100以内的质数表。用质数表检查对例子1的判断是否正确。

完成课件上的练一练。

六、课堂总结,畅谈收获。

师:通过这节课的学习,你们有什么收获?

找质数课件教案 篇2

质数和合数,例1,例2

1.理解质数和合数的意义。

2.会用质数表判断一个大于1的自然数是质数还是合数,熟记20以内的全部质数。

3.知道1既不是质数,也不是合数。

4.知道自然数按因数的个数分类可以分为质数、合数和1.

1.掌握质数。合数的概念。

2.正确地判断一个数是质数还是合数。

一.复习旧知。

2. 找出1~20奇数,偶数。

1 3 5 7 9 11 13 15 17 19

2 4 6 8 10 12 14 16 18 20

3.分类:

师:自然数可以分为哪两类?是按照什么标准分的?(2的倍数分的)

二.探究新知。

a:1.导入课题:

师:自然数可以按照能被2整除分为奇数,偶数两类。

那么自然数还有没有其他的分法。今天这节课,我

们就一起来研究“质数与合数”(板书课题)

2.提问:

师:看了这一课题后,你们想通过这节课的`学习学会些什么内容呢?

归纳问题(板书)

1) 怎样的数叫质数,怎样的数叫合数?

2) 自然数除了质数、合数外还有哪一类?

3) 用什么 方法判断一个数是质数还是合数?

b.学习质数,合数。

1.写出1~20各数的因数。(课件出示,学生完成表格)

1的因数1 6 1,2,3,6, 11 1,11, 16 1,2,4,8,16,

2 1,2, 7 1,7, 12 1,2,3,4,6,12, 17, 1,17,

3 1,3, 8 1,2,4,8, 13 1,13, 18 1,2,3,6,9,18,

4 1,2,4, 9, 1,3,9, 14 1,2,7,14, 19 1,19

5 1,5, 10, 1,2,5,10, 15 1,3,5,10 20 1,2,4,5,10,20

引导学生看因数(边回答,边看)

2.观察思考

师:这些书的因数的个数一样多吗?(生:不一样)

师:你能把这些数按因数的个数进行分类吗?

学生讨论,分类 (分为哪几类)

3.学

生12报结果(表格,学生完成)

只有一个因数 只有1和它本身两个因数 有两个以上因数的

1 2,3,5,7,11,13 4.,6,8,10,12

17,19 14,15,16,18,20

4. 观察比较,发现特点。归纳概念

质(1)师:观察2.,3,5,7,11,13,17,19 这几个数的因数有什么

特点?(每个数的因数只有1和它本身二个)像这样数叫做质数?

生:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

(板书) (课件出示)

找质数课件教案 篇3

质数与合数是青岛版五年级上册107~~109页的内容,是在约数和倍数以及能被2、3、5整除的数的特征的基础上进行教学的。是求最大公约数、最小公倍数以及约分、通分的基础。因此这部分内容的教学不仅要使学生掌握质数、合数的概念,而且能较快地看出常见数是质数还是合数。

(一)质数、合数的意义。能正确判断一个数是质数还是合数

(二)质数、合数与奇数、偶数的区别。

使学生掌握质数与合数根本区别在于:质数,只有1和本身二个约数;合数,除了1和本身,还有其它约数。能否被2整除是区别奇数与偶数的标准。

多媒体课件 1—50自然数表

一. 创设情境,激情导入

想必同学们对于我国的古典四大名著被并不陌生吧?尤其是《西游记》可谓是“深入学生之心”啊!师徒四人在取经的路上真是历经艰辛,有一次师徒四人途经荒山野岭,饥饿难耐,只好有孙悟空借着筋斗云去千里之外寻找食物,不负众望啊,不一会儿,悟空就带着一支硕果累累的桃枝回来,师徒四人终于可以饱餐一顿了。吃饱之后,唐僧就想逗一下八戒,就说:“八戒,你看你吃的桃子最多,数一下桃核看看你吃了多少?”“17个”“沙悟净呢?”“师傅,12个”“那悟空呢?”“9个”“如果我要你们把你们吃剩的桃核排成方阵,八戒你想一下你们三师兄谁的桃核组成的方阵最多?”“当然是我了,因为我的数字最大。”同学们你们说八戒说的对吗?那你猜想一下组成方阵的多少与什么有关呢?(与因数的多少有关)这节课我们就来研究一个数字因数多少的问题:质数与合数。

二. 合作探究,深入浅出

1、小组合作,验证猜想

以小组合作的形式找出

9、12、17这三个数字的所有因数,看一下能否组成方阵与数字的什么有关?在找因数之前谁能回答我怎样才能快速的找出一个数字的因数?

同学们通过我们刚才找数字的因数,能告诉我能否组成方阵与数字的什么有关吗?(因数的个数)

2、合作探究,总结概括

刚才我们知道了能否组成方阵与因数的个数有关,现在请同学们观看大屏幕,请写出这些数字的所有的因数并试着给他们分类。(小组合作,共同完成)

24 25 28 29 30 31 32

小组汇报: 24 25 28 30 32 29 31 17

我们把含有三个或三个以上因数的数字叫做合数。

把只含有1与本身这两个因数的数字叫做质数。 那数字1呢?

只有自己本身一个因数。1这个数字既不符合质数也不符合合数的意义,所以1既不是质数也不是合数。

大屏幕出示数字,37 45 51 53 91 请判断哪些数字是质数,哪些数字是合数

3、细化分类

知道奇数、偶数、质数、合数的区别

上一节课我们把自然数按照能否被2整除分为哪几类?(奇数与偶数)现在你能不能按照数字因数的多少来能他们分类?

自然数:质数合数

三、巩固深化,加深记忆 出示1~~50自然数表

请在1~20的自然数中选出质数是();合数是()。

20以内的质数非常重要,在分解质因数的时候我们都要用到,所以你必须铭记于心,现在以小组合作互相说一说20以内的质数,看谁记得快。

请圈出21~~50以内的质数。(23、29、31、37、41、43、47、)请想办法记住他们。

请写出20以内的`

1、既是质数又是奇数的数字。()

2、既是质数又是偶数的数字。()

3、既是合数又是奇数的数字。()

4、既是合数又是偶数的数字。()

下面几种说法对不对?说明理由。

1、质数都是奇数。( )

2、合数都是奇数。( )

3、除2以外的偶数都是合数.。()

4、自然数除了质数就是合数。( )

5、自然数除了奇数就是偶数。( )

6、“一个数有1和它本身两个约数,这样的数叫做质数。”(

填空:

1、最小的质数 。( )

2、最小的合数。( )

3、最小的奇数是()

4、最小的偶数是()

四、

1、这节课你学到了什么?

2、通过这节课的学习我们知道了给出某一个数字就能知道有几个因数,你能不能根据这节课的学习给我们学校每个班40人的广播操比赛设计一种或几种方阵呢?

本节课的教学从学生喜闻乐见的故事出发,引导学生先尝试猜想,然后让学生动手操作与讨论,从而得出结论。充分体现了学生的主体地位与老师的主导地位。

本节课在学生自己总结认识质数与合数的基础上让学生掌握自然数的分类,不仅仅是学生认识自然数的升华,尤其是让学生写出20以内既是质数又是奇数等等问题的数字,更对学生的理解能力起到更上一层楼的作用。

找质数课件教案 篇4

一、谈话导入

师:同学们,今天我们继续研究有关数的知识。

(出示数字卡片:把2、13、9、12、7、16、15贴在黑板上。)

师:看到这些数,你想到了什么?

生:2是12的因数,12是2的倍数,13、9、7、15是奇数,2、12、16是偶数……

师:9不仅是奇数,还有一个名字叫合数;2不仅是偶数,还有一个名字叫质数。2是质数,9是合数,那么其他的数是质数还是合数呢?

今天这节课,我们就一起来研究有关质数与合数的知识。(板书课题:质数与合数)

[通过复习,了解学生的知识储备,为下面的学习奠定基础。]

二、动手操作,探索新知

(一)操作,感悟

师:请两个同学商量一下你们想研究哪个数。

(学生商量研究的数。)

师(出示边长1厘米的正方形):今天,我们就借助这些小正方形帮助我们理解。

我来提出活动要求:

(1)你们研究哪个数,就从学具袋中取出几个正方形。

(2)用你们选好的正方形来拼摆长方形或正方形。能摆几种,就要摆出几种。

(3)将你摆的结果,填在表格中。

同时请你思考问题:

(1)你用几个小正方形拼出了你的长方形或正方形?

(2)你是怎样拼的?长方形的长、宽各是多少?或正方形的边长是多少?

(两个学生利用学具独立操作、拼摆。)

(学生依次汇报自己拼摆的结果,教师用电脑演示学生汇报的结果,并展示图形。)

[通过动手操作,让学生在操作中了解事物的特征,明确正方形的个数与长方形的长与宽之间的关系。学生通过动手操作得到了大量的学习资源,为后面的'学习奠定了基础。学生与学生之间的互相交流,更加利于学生对知识的掌握。他们在相互的探讨中,使问题得到解决。]

(二)发现图形与算式的关系

师:你们看,拼成的长方形的长、宽与正方形的个数有什么关系?

(图形消失,出示乘法算式:7=7X1。)

生:长与宽相乘就得到了正方形的个数。

师:用XX个小正方形,可以拼出几个长方形?所以写出了几个乘法算式?

(学生根据自己拼摆的结果作出相应的回答。)

(三)发现算式与因数的关系

找质数课件教案 篇5

教学目标:

①使学生掌握质数和合数的意义,能正确判断一个常见数是质数还是合数。

②知道100以内的质数,熟悉20以内的质数。

③培养学生自主探索、独立思考、合作交流的能力。

④让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

教学重点:质数和合数的意义。

教学难点:正确判断一个常见数是质数还是合数。

教学过程:

一、导入(课件出示)

1.在1——20的各自然数中,奇数有哪些?偶数有哪些?

2.想一想:自然数分成奇数和偶数,是按什么标准分的?自然数分几类?

师:自然数还有一种新的分类方法,今天就来学习这种分类方法。

二、出示预习提纲:

自学内容P23-24例1、做一做,P25—26的T1—5

思考:

1、按要求填书中表:

从上面的表格中的数据有什么特点?

2、什么叫质数和合数?举例说明。

3、在这个表中找出100以内的全部质数

小组讨论,你发现了什么?

4、把不理解的内容做好标记。

三、汇报展示:

1.学习质数和合数的概念。

预习反馈(1)请写出1~20各数的因数?(根据学生的回答板书)

预习反馈(2)观察:填在书中第23页表格中的数据有什么特点?

(3)学生讨论后归纳分成三类:只有因数1的;只有1和它本身这两个因数的;除了1和本身之外还有其他因数的。)

反馈:只有一个因数的:1

只有1和它本身两个因数的:2,3,5,7,11,13,17,19

有两个以上的因数的:4,6,8,9,10,12,14,15,16,18,20

(4)教学质数和合数的概念。

①自然数只有两个因数的,如:2、3、5、7、11、13、17、19等。这几个数的因数一定是多少?

讲:一个数,如果只有1和它本身两个因数,我们把这样的数叫做质数(或素数)。(板书“质数”)

②4、6、8、9、10、12、14、……这些数的因数与上面的数的因数相比有何不同?

讲:一个数,如果除了1和它本身两个因数外还有别的因数,我们把这样的数叫做合数。(板书“合数”)

注意:1既不是质数,也不是合数。

(5)提问:什么叫质数?什么叫合数?自然数按因数个数来分,可以分几类?

2、质数、合数的判断方法。

(1)我们应该怎样去判断一个数是质数还是合数?(根据因数的个数来判断)

(2)完成P23做一做,判断下列各数中哪些是质数,哪些是合数?(先独立完成,再同桌互查)

(3)提问:你是怎样判断的?(找出每个数的因数的个数)

判断是质数还是合数,是不是把所有的因数都找出来?(不必要,只要发现自然数除了1和本身指望还有其它的因数,不管有几个,它都是合数)

3.出示P24例题1,找出100以内的质数,做一个质数表。

(1)提问:如何很快的制作一张100以内的指数表?

(2)按质数的概念逐个判断?也可以用筛选法。

(3)介绍筛选法:先排除2以外的所有偶数,接着排除3以外的所有3的倍数,再接着排除5以外的.所有5的倍数,最后排除7以外的7的倍数。因为1既不是质数,也不是合数,所以也必须排除,这样剩下的就是100以内的质数。

100以内的质数:(略)

(4)讲:判断一个数是不是质数,除了用质数的定义进行判断外,还可以查质数表,如100以内的质数表。(或者看6的倍数的左右)

四、反馈检测

完成P25题1~5

第3题:质数+质数=10,质数×质数=21,分析:这两个质数一定小于10,10以内的质数有2,3,5,7,通过观察可知,只有3和7。

同样,质数+质数=20,质数×质数=91,只有3+17=20和7+13=20,而积是91的只有7和13。

板书设计

质数和合数

质数(素数):只有1和它本身两个因数。如2、3、5、7

合数:除了1和它本身还有别的因数。如4、6、15、49

附质数和合数检测题:

一、填空。(口答)课件出示

1、最小的自然数是(),最小的质数是(),最小的合数是(),最小的奇数是()。

2、20以内的质数有(),20以内的偶数有(),20以内的奇数有()。

3、20以内的数中不是偶数的合数有(),不是奇数的质数有()。

4、在5和25中,()是()的倍数,()是()的约数,()能被()整除。

二、猜一猜:(课件出示)

三、判断题,对的在括号里写“√”,错的写“×”。

(1)任何一个自然数,不是质数就是合数。()

(2)偶数都是合数,奇数都是质数。()

(3)7的倍数都是合数。()

(4)20以内最大的质数乘以10以内最大的奇数,积是171。()

(5)只有两个约数的数,一定是质数。()

(6)两个质数的积,一定是质数。()

(7)2是偶数也是合数。()

(8)1是最小的自然数,也是最小的质数。()

(9)除2以外,所有的偶数都是合数。()

(10)最小的自然数,最小的质数,最小的合数的和是7。()

找质数课件教案 篇6

人教版数学五年级下册练习四第3、4、5题

本节课是在学生学习了奇数、偶数、质数、合数等知识的基础上进行教学的。由于这些概念比较抽象,学生容易混淆,本节课的目的是让学生更好地掌握质数、合数的意义,理顺奇数、偶数、质数、合数知识间的内在联系。通过复习回顾,指导练习,提高练习,由浅入深,让学生在掌握、运用知识中提升。练习的形式多样,通过说一说,找一找,猜一猜,让学生根据所学知识解决一些实际的问题,体会数学源于生活又用于生活,感受数学知识之间的密切联系和应用价值,激发学生学习数学知识的兴趣,培养和提高学生解决问题的能力。

1、进一步掌握质数和合数的意义,会根据质数和合数解决一些实际问题。

2、掌握质数、合数、偶数、奇数之间的联系和区别。

3、经历概念的辨别和指导练习的过程,体验比较分析,归纳整理,练习提高的学习方法。

一、复习回顾

1、什么叫做质数?什么叫做合数?

学生回顾已学知识,在小组中交流后汇报。

2、20以内的质数有 。

学生在练习本上写出20以内的质数,再汇报交流。

3、在23 8 15 4 13 19 2 26 9 45 52 32 17 22 97 这些数中,质数有 ,合数有 ;

奇数有 ,偶数有 。

先找出质数、合数,然后找奇数、偶数,再让学生说出分类的标准。

【设计意图:通过回顾质数和合数的概念,找质数,把非0自然数按不同的'标准分类,在分类、对比中复习质数、合数、奇数、偶数,进一步加强概念的辨析。】

二、指导练习

(一)说一说

1、理解质数、合数、偶数、奇数之间的联系和区别。

(1)师出示以下问题

a、什么数既不是质数也不是合数?

b、最小的质数是多少?它是偶数还是奇数?

c、是不是所有的偶数都是合数,所有的质数都是奇数?

d、最小的合数是多少?

(2)组织学生在小组中讨论以上问题,并互相交流。

学生汇报时,要求学生举例说明。

【设计意图:通过讨论、交流、举例说明让学生更好地理解质数、合数、偶数、奇数之间的联系和区别。】

2、练习四第3题:

出示:

(1)先让学生在小组中自主探讨这三个问题。

(2)组织学生汇报,说一说这些数都是几?你是怎样判断的?

【设计意图:通过猜谜语这个趣味性的活动让学生熟悉20以内的质数,培养学生的学习兴趣。】

3、练习四第4题。

(1)师出示题目,引导学生观察图画,理解题意。

师:从图上你知道了哪些数学信息?小猴遇到了什么问题?3个3个地装是什么意思?和我们学得什么知识有关?2个2个地装呢?5个5个地装呢?

(2)让学生独立帮助小猴解决问题,把解决问题的过程在小组中交流。

(3)如果有75个桃子呢?

小结:2、3、5的倍数的特征。

【设计意图:把数学与生活紧密联系,让学生在解决问题中巩固2、3、5的倍数的特征。教学层次分明,先引导学生理解题意,再独立解决,然后在小组交流;补充第(3)个问题,把本题设计成题组,再让学生解决,起到举一反三的作用。】

(二)找一找

练习四第5题

(1)师说明游戏规则:先由老师说出一个大于2的偶数,同学们找出和等于这个数的两个质数,看谁找得又快又对。

(2)找质数。

14=( )+( ) 8=( )+( ) 20=( )+( )

12=( )+( ) 24=( )+( )

师:一个大于2的偶数都可以表示为两个质数的和吗?

(3)小组合作:每两个人一组,其中一人说一个大于2的偶数,另一个人来找和等于这个数的质数。找出后,两人一起讨论是否正确,然后交换角色继续游戏。

(4)引导学生学习第26页“你知道吗”。

师适时对学生进行爱国主义和探索精神的渗透。

【设计意图:通过分层的游戏活动,在学生理解、掌握知识的同时,培养学生探究知识的能力,满足每个学生数学学习的需要,让不同的人在数学上得到不同的发展。】

三、提高练习

1、猜一猜

师:学校组织郊游,可咱班还有一个同学没来,要赶紧给他打电话。咱们先玩一个游戏,我说,你们把电话号码数字按顺序写下来。看谁猜得有快又准。

小于10的最大偶数是( )。

有因数3,也有因数6是( )。

10以内最大的质数是( )。

10以内最大的奇数是( )。

既不是质数,也不是合数,也不是0是( )。

最小的质数是( )。

是5的倍数,又是5的因数是( )。

最小的合数是( )。

该电话号码是( )。

2、把自己的学号进行自我介绍。

师提示:根据本单元学习的质数、合数、偶数、奇数,2、3、5的倍数的特征向大家介绍自己的学号。

(1)4人小组互相介绍。

(2)指名介绍。

【设计意图:创设一个郊游情境,让学生解决实际问题,提高学生的综合能力。通过自我介绍学号,让学生在玩中复习巩固已学的知识,训练学生的表达能力;通过学生与学生之间的互动,提高他们的学习兴趣。体会到数学源于生活又用于生活,实现人人学有价值的数学。】

四、课堂小结

通过这节课的学习活动,你有哪些收获?

有理数的乘法教案


希望这篇“有理数的乘法教案”能够满足您的需求让您感到满意。教案课件在老师少不了一项工作事项,就需要我们老师要认认真真对待。 教学过程中应该在教案和课件中得到准确的表达。欢迎您的到来希望您能看到我们的用心之处并收藏网站!

有理数的乘法教案(篇1)

本节是在学习了有理数加法和减法的基础上,进一步将有理数加减混合运算统一成加法运算,并通过省略加号、括号,得出省略括号的代数和形式,对于有理数加减混合运算,首先要将混合运算的式子写成省略括号的代数和的形式,然后按加法法则和运算律进行简便运算。本节内容把有理数的加减混合运算融入实际问题中,既提高了学生学习数学的积极性,又突出了《标准》对本节内容的特别要求。

学生是在学习了有理数的乘法第一课时的基础上来学习这一节内容的。学生在本节内容的学习中可能存在以下方面的困难:

(1)学生有理数乘法的法则、运算律记忆不牢固;

(2)在实际做题中不能灵活运用乘法运算律;

(3)在运用乘法运算律的过程中不能准确确定每一步运算符号,尤其是乘法的分配律。

本节课我采用“引导—合作—探究”的教学模式,从实际问题出发,通过创设问题情境,提出探究任务,让学生自主探究解决问题,并在解决问题的过程中发现新问题,并能提出创造性的想法。让学生体验探究的全过程,充分体现学生的主体地位,激发学生学习兴趣,培养学生创新精神和合作能力。

熟练有理数的乘法运算并能用乘法运算律简化运算。

让学生通过观察、思考、探究、讨论,主动地进行学习。

培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。

教法:主要采用实验探究法、谈话法、讨论法、多媒体辅助教学法。让学生通过自己动脑思考,同学之间相互讨论,来学习有理数的加减混合运算,培养学生的分析、综合能力以及探索能力和合作精神,有效地突出重点,突破难点。让学生最大限度地参与到学习的全过程。

以小组讨论为模式,积极参与合作探究,在小组合作探究中认真思考,操作,讨论,学会合作交流,培养借助团队力量解决自己无法完成问题的团队合作意识。

计算:

(1)5×(—6);(4)(—6)×5;

(2)[3×(—4)]×(—5);(3)3×[(—4)×(—5)];

(4)5×[3+(—7)];(5)5×3+5×(—7).

教师指出,由上面计算结果,可以说明有理数乘法也同样有交换律,结合律和分配律,并让学生分别用文字叙述和含字母的代数式表达三种运算律.

文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

文字叙述:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

提问:这里为什么只说“和”呢?3×(5—7)能不能利用分配律?

答:这里的“和”不再是小学中说的“和”的概念,而是指“代数和”,3 ×(5—7)可以看成3乘以5与—7的和,当然可利用分配律。

提问:如何表达三个以上有理数相乘或一个数乘以几个有理数的和时的运算律?

答:乘法交换律:abc=cab=bca,或者说任意交换因数的位置,积不变;

乘法结合律:a(bc)d=a(bcd)=……,或者说任意先乘其中几个因数,积不变;

分配律:a(b+c+d+…+m)=ab+ac+ad+…+am,再把所得的积相加。

继而教师作如下小结:

(1)小学学习的乘法运算律都适用于有理数乘法。

(2)我们研究数,总是由数的意义、数的认识(读、写、大小比较等)到数的运算和数的运算律这样一个顺序进行,小学学习的正数和0是这样,现在学习有理数也是这样,将来进一步学习范围更大的数还是这样。掌握了学习的方法,就掌握了自学的钥匙,希望予以注意。

计算(能简便的尽量简便):

(5)(—23)×(—48)×216×0×(—2);

(6)(—9)×(—48)+(—9)×48;

教师指导学生看书,精读多个有理数乘法的法则及乘法运算律,并强调运算过程中应该注意的问题.

1.计算:

(7)(—7。33)×42。07+(—2。07)(—7。33);

(8)(—53。02)(—69。3)+(—130。7)(—5。02);

在以上设计中,我力求体现“以学生发展为本”的教学理念,突出数学学科学以致用的特征,积极倡导“自主探究”的学习方式,让学生在开放而富有创新活力的氛围中学习,从而落实学生的主体地位,促进学生主动自主学习。

本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律.为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法的符号法则和乘法的运算律告诉学生,然后通过做习题来加以巩固。这种教学方法具有直截了当的特点,但不利于开启学生思维,更不易使学生在接受知识的同时,提高观察、归纳和概括的能力.因此,我们采取了上述作法。

为了充分发挥每个学生思维的积极性,上述设计强调学生与教师一起共同参与教学活动.只要我们坚持把数学活动过程体现在教学中,又尽力发挥学生的思维积极性,那么学生所学到的就不仅是一些数学知识,而且会学到分析问题和解决问题的一般方法。

有理数的乘法教案(篇2)

教学目标

1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节的教学重点是能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

本节的难点是对有理数的乘法法则的理解。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2.两数相乘时,确定符号的依据是“同号得正,异号得负”.绝对值相乘也就是小学学过的算术乘法.

3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6.如果因数是带分数,一般要将它化为假分数,以便于约分。

有理数的乘法教案(篇3)

教学目的:

1、要求学生会进行有理数的加法运算;

2、使学生更多经历有关知识发生、规律发现过程。

教学分析:

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

教学过程:

一、知识导向:

有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。在学习中应掌握有理数的乘法法则。

二、新课:

1、知识基础:

其一:小学所学过的乘法运算方法;

其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:

(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的东方6米处

拓展:如果规定向东为正,向西为负

情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?

列式:

即:小虫位于原来出发位置的西方6米处

发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6

同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6

概括:把一个因数换成它的相反数,所得的积是原来的积的相反数

3、设疑:

如果我们把中的一个因数2换成它的相

反数-2时,所得的积又会有什么变化?

当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

三、巩固训练:

P52.1、2、3

四、知识小结:

本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。

五、家庭作业:

P57.1、2,3

六、每日预题:

1、小学多学过哪些乘法的运算律?

2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?

有理数的乘法教案(篇4)

学习目标:

1、要熟记有理数除法的法则,会进行有理数除法的运算。

2、掌握求有理数倒数的方法,并能熟练地求出一个给定的有理数的倒数。

3、能熟练地进行简单的有理数的加减乘除混合运算。

4、体会比较、转化、分类的思想方法,在探索有理数除法法则时的应有

学习重点:有理数除法的法则及应用;求一个有理数的倒数。

学习难点:在进行有理数除法运算时,能根据题目特点,恰当地选择有理数的除法法则。

学习过程:

一 前置复习 :

1、有理数的乘法法则是:

举例说明。

2、多个有理数乘法:(1)几个不等于0的有理数相乘,积的符号由 决定,当 时积为正;当 时积为负。

(2)几个有理数相乘, ,积就为零。

二 探究新知:(教师寄语: 现实世界中的事物都是既相互联系又可以相互转化的,在数学上加与减,乘与除也是可以相互转化的.)

自学课本58页至59页例4之前的内容,并且认真体会在探索除法与乘法的关系时,用到的比较、转化、分类的思想方法。,一定要熟记:

(1) 有理数除法运算转化为乘法运算的法则:除以一个数,________________________。

____________________。

(2) 有理数的除法法则:两数相除,_____________,_____________,_____________。

0除以任何_______________________________。

(3) 与以前学过的倒数的概念一样,___________两个有理数互为倒数。

如,3与____互为倒数,-6与_____互为倒数,2.25是____的倒数,___是 的倒数。

三 新知应用:

例1、独立完成课本58页例4,然后对比课本上的解答,思考交流:在两个________数相除时,可选择法则(1),在两个_______数相除时,可选择法则(2)

学以致用 计算:

(1) (42)7 (2) ( )( )

例2、计算(1) ( )( )( ) (2) ( )( )

(温馨提示:1、 有理数的乘除混合运算,应把除以一个数转化成乘这个数的倒数,然后统一成乘法来进行计算。2、 加减乘除混合运算的运算顺序和小学一样。)

四 课堂练习:独立完成课本P59练习2,3题。(将完整的计算过程写在下面空白处)

五 达标测试:(独立完成)

1 填空:(1)2 的倒数与 的相反数的积是_______。

(2)(1)(3)( )=______。

(3)两个数的商为正数,那么这两个数一定是_________。

(4)一个数的倒数是它本身,则这个数是____________。

2、计算:(1) (2)

(3)、 (4) ( + )

六 总结反思:

1、说一说:

本节课我学会了 ;

使我感触最深的是 ;

我感到最困难的是 ;

我想进一步探究的问题是 。

2、:评一评

自我评价 小组评价 教师评价

七 布置作业

1(必做题) 课本60页习题A组3,4题。(要求:做在作业本上)

2(选做题) 课本60页习题B组1,2题。(要求:将答案直接写在课本上,明天课堂上用5分钟时间讨论交流)

有理数的乘法教案(篇5)

1.使学生掌握多个有理数相乘的积的符号法则;

2.掌握有理数乘法的交换律和结合律,并利用运算律简化乘法运算;

在师生互动、生生互动的系列活动中,学会与老师及与其他同学交流、沟通和合作,准确表达自己的思维过程。培养学生观察、归纳、概括能力及运算能力.

通过例题与练习,体验“简便运算”带来的愉悦,懂得运算的每一步都必须有依据。通过新知的导入和运用过程,感受到人们认识事物的一般规律是“实践、认识、再实践、再认识”。培养学生的观察和分析能力,渗透转化的教学思想。

1.有理数乘法法则是什么?

2.计算(五分钟训练):

(1)(-2)×3; (2)(-2)×(-3); (3)4×(-1.5); (4)(-5)×(-2.4);

(5)-2×3×(-4); (6) 97×0×(-6);

(7)1×2×3×4×(-5); (8)1×2×3×(-4)×(-5);

(9)1×2×(-3)×(-4)×(-5); (10)1×(-2)×(-3)×(-4)×(-5);

(11)(-1)×(-2)×(-3)×(-4)×(-5).

有理数的乘法教案(篇6)

有理数的乘法教案

学习目标:

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力。

3、培养语言表达能力。调动学习积极性,培养学习数学的兴趣。

学习重点:有理数乘法

学习难点:法则推导

教学方法:引导、探究、归纳与练习相结合

教学过程

一、学前准备

计算:

(1)(一2)十(一2)

(2)(一2)十(一2)十(一2)

(3)(一2)十(一2)十(一2)十(一2)

(4)(一2)十(一2)十(一2)十(一2)十(一2)

猜想下列各式的值:

(一2)×2(一2)×3

(一2)×4(一2)×5

二、探究新知

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空。

2、观察以上各式,结合对问题的研究,请同学们回答:

(1)正数乘以正数积为__________数,(2)正数乘以负数积为__________数,

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

《1.4.1有理数的乘法》同步练习含解析

1、若有理数a,b满足a+b

A、a,b都是正数

B、a,b都是负数

C、a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值

D、a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值

5、若a+b

A、a>0,b>0

B、a

C、a,b两数一正一负,且正数的绝对值大于负数的绝对值

D、a,b两数一正一负,且负数的绝对值大于正数的绝对值于0

《1.4.1.2有理数的乘法运算律》课时练习含答案

2、大于—3且小于4的所有整数的积为()

A、—12 B、12 C、0 D、—144

2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,这个运算运用了()

A、加法结合律

B、乘法结合律

C、分配律

D、分配律的逆用

3、下列运算过程有错误的个数是()

①×2=3—4×2

②—4×(—7)×(—125)=—(4×125×7)

③9×15=×15=150—

④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50

A、1 B、2 C、3 D、4

4、绝对值不大于2 015的所有整数的积是。

5、在—6,—5,—1,3,4,7中任取三个数相乘,所得的积最小是,最大是。

6、计算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的结果为。

7、计算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的结果是。

有理数的乘法教案(篇7)

教材背景:本节课是有理数的乘法的第一课时,是学习好有理数乘除法的基础和关健。教材安排的内容较简单,从生活实际背景引入算术乘法,用相反意义的量过渡到负数与正数的乘法,通过让学生观察发现"把一个因数换成它的相反数,所得的积是原来积的相反数".接着安排了"试一试"让同学自己体会演绎推理得出正数与负数,负数与负数相乘,任何数与零相乘的规律,进而讨论归纳得出有理数乘法法则。并配有例习题让同学理解应用此法则。最后通过练习3让同学想一想找规律,得出一个数与1及-1相乘积的特征。整篇教材突出了让学生自己探索、试验、体验新知识的产生,规律的发现,自主探索,主动获得知识的新教改思想。

知识目标:掌握有理数的乘法法则并会运用它进行计算。

能力目标:学会探究式合理推理,培养构建思想和创新意识;训练从特殊到一般归纳推理及合情演绎推理能力。

情感目标:会用已学的知识探索解决新问题,勇于向自己挑战,开放思维空间,善于合作与交流,提高自主学习能力,体验获得知识的过程,在生活实际中感受应用数学。

两个有理数相乘的符号法则和有理数乘法法则的得出及应用。

从正数与正数相乘过渡到正数与负数相乘及负数与负数相乘符号的变化。

因本节课教学内容较简单,练习量不多。为了更好地使数学融入生活,使所学的知识更贴近学生的生活实际,增加了环保公益广告引入新课。为了达到面对全体同学,使不同的人学习不同的数学,本节课对例习题进行删补,增加了小数、带分数的乘法例型,增设了不同层次的思维训练题组A与思维训练B.

遵循新教改提倡的"以学生为主体"的精神,让学生自己发现、探索、讨论、协作的主导思想,本节课采用了"发现、探究法""分层递进法""分组学习""合作与交流"等有利于学生学习教法与学法。

多媒休课件

(一)看公益广告,渗透环保思想,引入新课。

1、复习简单的算术数乘法

(1)计算48×1/2, 5/12×3/5,

(2)全世界每分钟砍伐森林30公顷,平均每年减少的雨林面积为750万公顷。50年后全世界将减少雨林面积多少公顷?

(引入环保问题,放映公益广告,激发学生学习数学的兴趣,增强学生的环保意识。)

(3)你会计算(-3)×(+2),(-3)×(-2)吗?由此引出正数与负数相乘,负数与负数相乘怎么乘,设置悬念,提出本节课要解决的问题。

(二)创设问题情景,建立数学模型,探究新知。

1、老虎从东西方向的直道上以每分钟100米的速度前进,请同学确定

(1)向东走2分钟后老虎位于原来位置的哪个方向?相距多少米?

(2)向西走2分钟后老虎位于原来位置的哪个方向?相距多少米?

从此问题情景建立数学模型,让同学画数轴写出算式:100×2=200,(-100)×2=-200.

2、把问题1中的"老虎从东西两个方向以每分钟100米的速度前进"改为"一只小虫从东西方向的跑道以每分钟3米的速度前进",结果有何变化?大家写出算式:(+3)×(+2)=6,(-3)×(+2)=-6比较这两个算式,有什么发现?

当我们把(+3)×(+2)=6中的一个因数"3"换成它的相反数"-3",所得的积是原来积"6"的相反数"-6".再看上一题得到的算式100×2=200,(-100)×2=-200,一般地, "一个因数换成它的相反数所得的积是原来积的相反数".

3、引导学生观察所得的两个算式的不同,通过小组协作探究3×(-2),(-3)×(-2),(-3)×0,怎么求,有几种求法,展现学生思维的多样性与广阔性,培养学生创新意识。

4、让同学多写几个两有理数相乘的算式,小组讨论,试着归纳出正数乘正数,正数与负数相乘积的符号及积的绝对值如何确定,直观得出两个有理数相乘的符号法则,类型,规律。老师再用图象符号显示出来,使学生深刻理解两个有理数相乘的符号法则:"同号得正,异号得负"进而帮助学生结合绝对值的算术关系归纳得出有理数的乘法法则,并用屏幕显示"两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零".随后应用此法则计算,讲解课本上的P51例题。

例1(1)(-5)×(-6);(2)(-1/2)×1/4;并补充(3)

解:(1)(-5)×(-6)=+(5×6)=30;

(2)(-1/2)×1/4=-(-1/2×1/4)=-1/8;

(3) =-(5/3×12/5)=-4

强调学生应用乘法法则时注意两点

(1)先确定积的符号

(2)定积的绝对值即绝对值相乘。使学生轻松解决本节课所提出来的重点问题及本节课的难点。

(三)小组交流,练习巩固,演绎应用所学的知识。

让同学做书上的配套练习P52的1、2、3,演绎应用有理数的乘法法则。通过小组讨论,推选代表解答,并回答老师的现场提问,活跃课堂气氛,增强学习积极性与集体荣誉感。使学生在交流学习中体会成功的喜悦。

(四)分层次思维训练,使不同的学生得到不同的发展。

有理数的乘法教案(篇8)

本课的教学内容是有理数乘法交换律、结合律,分配律,是本单元的教学重点,也是本节课内容的难点。有理数乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用,因此本节具有非常重要的作用。

(二)教学目标:

2、理解并掌握有理数的乘法运算律;乘法交换律、乘法结合律、分配率

二、说教学方法:

根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法、讲授法等。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时运用电教多媒体动画演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

三、说学法:

根据学法指导自主性的原则,让学生在教师创设的问题情境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。

现在用我们所学的知识,大家解一下这几道题:

6×13 13×6(—5)×6 6×(-5)—4×(-1/2)-1/2×(—4)提问:观察一下这两组式子和结果,可以发现什么规律?学生:每组的计算结果一样,我们可以得到乘法的交换律结合律在有理数中依然成立。

现在用我们所学的知识,大家解一下这几道【2×(-3)】×(-1/3)2×【(-3)×(-1/3)】提问:大家又能发现什么规律

乘法的结合律:三个数相乘先把前两个数相乘,或者先把后两个数相乘,积不变。 (ab)c=a(bc)技能训练

(-10) ×(-1/3)×0.1×6 20×1/4×(-8)×1/20第三步

(-4+5+1)×6 -4×6+5×6+1×6你发现了什么?

一个数与几个数相乘等于把这个数分别与这几个数相乘,再把积相加。

乘法分配率a(b+c)=ab+bc 总结:我们发现小学学过的乘法三大运算律在有理数范围内同样适用。配合例题,规范解法

例、用两种方法计算(1/4 + 1/66/12)×12 =-1/12×12 =-1先通分加减之后再做乘法

解2:原式=1/4×12+1/6×12—1/2×12 =3+2-6 =-1省去通分的麻烦

70×14+89×14+41×14 29 24/25×5 20 1/5×5解:原式=14 ×(70+89+41)解:原式=(30-1/25)×5解:原式=20×5+1 =14 ×200 =30× 5-1/25× 5 =101 =2800 =150-1/5

三、巩固训练,熟练技能=149 4/5 30×(1/2-2/3+0.4) 5 24/13×12 19 23/24×24 (1/3 + 1/4 - 1/2) ×12

有理数的乘法教案(篇9)

人教版数学有理数乘法教学设计

设计理念

1.注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。教学中要注重让学生通过自己的.活动来获取、理解和掌握这些知识。

2.本课注意降低了对运算的要求,尤其是删去了繁难的运算。注重使学生理解运算的意义,掌握必要的基本的运算技能。

3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。

教学目标

1.使学生掌握有理数乘法的运算律,并利用运算律简化乘法运算。

2.使学生掌握多个有理数相乘的积的符号法则。

过 程 与 方 法: 培养学生观察、归纳、概括及运算能力。

情感态度与价值观:让学生感知数学来源于生活,培养学生学习数学的兴趣。

重点 乘法的符号法则和乘法的运算律。

难点 积的符号的确定。

教学过程

一、复习引入;

观察并计算

①(-2)3456

②(-2)(-3)456

③(-2)(-3)(-4)56

④(-2)(-3)(-4)(-5)6

⑤(-2)(-3)(-4)(-5)(-6)

二、自主学习探索:

1.以上几个式子有何区别与联系?

2.你认为多个数相乘先干什么?

3.你能总结出什么规律?

有理数的乘法教案(篇10)

【教学目标】

1.熟练有理数乘法法则;

2.探索运用乘法运算律简化运算.

【对话探索设计】

〖探索1

你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?

〖阅读理解

乘法交换律和结合律(见P40)

〖探索2

下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?

(1)252004 (2) - 1999

〖探索3

运用运算律真的能节省时间吗?分两个大组,比一比:

计算(-198)

〖练习1

运用乘法交换律和结合律简化运算:

(1)1999125 (2) -1097

〖探索4

1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?

2.如右图,你会用两种方法求长方形ABCD的面积吗?

〖例题学习

P41.例5

〖作业

P41.练习

〖补充作业

1.计算(注意运用分配律简化运算):

(1)-6(100-); (2)(-12).

(2)2(-3)4(-5)(-6)789(-10);

(3) 2(-3)4(-5)(-6)0789(-10);

4.下列各式的积(幂)是正的还是负的?为什么?

(1)(-3)(-3)(-3)(-3)(-3).

5.运用乘法交换律和结合律简化运算:

(1)-98(-0.6); (2)-1999(-)()

【补充练习】

1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的高空的气温是多少?

2.运用分配律化简下列的式子:

(1)例3x+9x+x (2)13x-20x+5x;

=(3+9+1)x

=13x;

(3)12-9 (4)-z-7z-8z.

有理数的乘法教案(篇11)

积的符号 ;

积的符号 。

2完成下面填空:

(2)(-10)×(- )×(-0.1)× 6 =________

(3)(-10)×(- )×(-0.1)×(-6)=________

(4)(-5)×(- )× 3 ×(-2)× 2=________

(5)(-5)×(-8.1)× 3.14 × 0=________

(1)8+(-0.5)×(-8)× (2)(-3)× ×(- )×(- )

(3)(- )× 5 × 0 ×(- ) (5) (-6)×(+37) × (- )×(- )

4.计算:(1)(-4)×(-7)×(-25) (2)(- )×8×(- )

(3)(-0.5)×(-1)× ×(-8) (4)(-5)-(-5)× ×(-4).

(5)(-3)×(7)×-3 ×(-6) (6)(-1)×(-7)+6×(-1)×

有理数的乘法教案(篇12)

引导学生观察上面各题的计算结果,找一找积的符号与什么有关?

(7),(9),(11)等题积为负数,负因数的个数是奇数个;(18),(20)等题积为正数,负因数个数是偶数个.

是不是规律?再做几题试试:

(1)3× (-5); (2)3×(-5)×(-2); (3)3×(-5)×(-2)×(-4);

(4)3×(-5)×(-2)×(-4)×(-3);(5)3×(-5)×(-2)×(-4)×(-3)×(-6).

同样的结论:当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正.

再看两题:

(1)(-2)×(-3)×0×(-4); (2)2×0×(-3)×(-4).

结果都是0.

引导学生由以上计算归纳出几个有理数相乘时积的符号法则:

几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

几个有理数相乘,有一个因数为0,积就为0.

说明:(1)这样以后进行有理数乘法运算时必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值.

(2)第一个因数是负数时,可省略括号.

计算:

(1)5×(-6); (2)(-6)×5;

(3)[3×(-4)]×(-5); (4)3×[(-4)×(-5)];

由上面计算结果,可以说明有理数乘法也同样有交换律,结合律,

文字叙述:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.

(2)(-8)×(-7.2)×(-2.5)×

(2)原式=-(8×2.5)×(7.2× )……交换因数位置,决定积的符号

相关推荐

  • 有理数教案六篇 作为老师的任务写教案课件是少不了的,又到了老师开始写教案课件的时候了。教案是有效解决教学问题的必要手段,怎么才能快速写好一份优质教案课件?您在寻找好文章吗栏目小编推荐您读一下“有理数教案”,我们会努力为您带来更多优质内容请继续关注我们的网站!...
    2023-08-06 阅读全文
  • 有理数教案精选 俗话说,手中无网看鱼跳。。身为一位人民教师,我们都希望孩子们能学到知识,一般来说,提升学生的效率最好是准备一份教案,提前准备好教案可以有效的提高课堂的教学效率。那么,你知道的幼儿园教案要怎么写呢?下面是小编精心整理的"有理数教案精选",为方便后续阅读,请你收藏本文。教学目的:1.了解计算器的...
    2023-05-15 阅读全文
  • 找质数课件教案(集锦6篇) 宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案,欢迎你参考,希望对你有所助益!1、使学生理解质...
    2023-06-18 阅读全文
  • 有理数的乘法教案 希望这篇“有理数的乘法教案”能够满足您的需求让您感到满意。教案课件在老师少不了一项工作事项,就需要我们老师要认认真真对待。 教学过程中应该在教案和课件中得到准确的表达。欢迎您的到来希望您能看到我们的用心之处并收藏网站!...
    2023-07-12 阅读全文
  • 有关2023数学教案设计集锦 经过收集,小编为您献上2023数学教案设计。教育者的关注和爱护在学生的心灵上会留下不可磨灭的印象,在开展教学活动前是需要用到教案的。一份教案可以反映教师的个性。欢迎阅读,希望你能够喜欢并分享!...
    2023-02-27 阅读全文

作为老师的任务写教案课件是少不了的,又到了老师开始写教案课件的时候了。教案是有效解决教学问题的必要手段,怎么才能快速写好一份优质教案课件?您在寻找好文章吗栏目小编推荐您读一下“有理数教案”,我们会努力为您带来更多优质内容请继续关注我们的网站!...

2023-08-06 阅读全文

俗话说,手中无网看鱼跳。。身为一位人民教师,我们都希望孩子们能学到知识,一般来说,提升学生的效率最好是准备一份教案,提前准备好教案可以有效的提高课堂的教学效率。那么,你知道的幼儿园教案要怎么写呢?下面是小编精心整理的"有理数教案精选",为方便后续阅读,请你收藏本文。教学目的:1.了解计算器的...

2023-05-15 阅读全文

宜未雨绸而缪,毋临竭而掘井。幼儿园的老师都希望自己讲的课学生们爱听,能学习的更好,为了加强学习效率,我们一般会事先准备好教案,教案对教学过程进行预测和推演,从而更好地实现教学目标。所以你在写幼儿园教案时要注意些什么呢?小编花时间专门编辑了找质数课件教案,欢迎你参考,希望对你有所助益!1、使学生理解质...

2023-06-18 阅读全文

希望这篇“有理数的乘法教案”能够满足您的需求让您感到满意。教案课件在老师少不了一项工作事项,就需要我们老师要认认真真对待。 教学过程中应该在教案和课件中得到准确的表达。欢迎您的到来希望您能看到我们的用心之处并收藏网站!...

2023-07-12 阅读全文

经过收集,小编为您献上2023数学教案设计。教育者的关注和爱护在学生的心灵上会留下不可磨灭的印象,在开展教学活动前是需要用到教案的。一份教案可以反映教师的个性。欢迎阅读,希望你能够喜欢并分享!...

2023-02-27 阅读全文
Baidu
map