幼儿教师教育网,为您提供优质的幼儿相关资讯

人教版六年级下册数学教案

发布时间:2024-07-07 人教版下册数学教案 人教版数学教案

人教版六年级下册数学教案范本。

幼儿教师教育网小编精选的文章“人教版六年级下册数学教案”将为您展示更多的知识和见解。教案课件是老师不可缺少的课件,所以在写的时候老师们就要花点时间咯。每一个详尽的教案都需要有理有据。谢谢您的光临如果您满意的话欢迎加入我们的收藏夹!

人教版六年级下册数学教案【篇1】

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4

0.5 :0.2和5:2

1/2:1/3 和6 : 4

0.2:0.8和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.440=96

两个内项的积是1.660=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.61 =0.6

两个内项的积是0.51.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.440=1.660

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

(2)0.8:1.2=4:6

( )( )=( )( )

(3)45=210

4:( )=( ):( )

5.做一做。

完成课本中的做一做。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么, = ,

(3)a︰8=9︰b,那么,ab=( )

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版六年级下册数学教案【篇2】

一、创设情境,提出问题

师:同学们,你们知道一个人去找工作时,他一般最关注什么?

生:工资。

生:工作环境和待遇。

师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表:

某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I

月工资30002000900800700700600600600600500

问题1请大家仔细观察表中的数据,讨论回答下面的问题:

(1)副经理说月平均工资1000元是否欺骗了李叔叔?

(2)你有什么想法?

生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。

师:对,我们学过平均数的知识,平均数是1000元是没有错。

那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。

生:因为两位经理的工资很高,带动了员工的平均公资。

师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。

【设计意图:本环节痛过李叔叔在找工作时遇到的实际问题,使数学贴近生活,激发学生的兴趣,让学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。】

学生小组讨论:

生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。

生2:我认为700元比较合理,因为它是这组数据的中位数。

师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱?

生:600元

师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。

二、探究新知。

板书:众数。

【设计意图;本环节提出这样的问题,主要想通过工资表中出现次数最多的600理解众的含义,进而理解众数的意义。】

师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。

师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。

五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米)

1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

1.51,1.51,1.51,1.51,1.52,1.54,1.54

你认为参赛队员的身高是多少比较合适?

学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。

【设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考,探究,讨论。交流中充分发表自己的意见,在实际问题中体会三个统计量的区别和他们各自的适用限度,让学生意识到生活中数学无处不在,感受和体会数学中美的因素】。

三、分析数据,尝试统计决策。

师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩)

甲:9.5109.49.59.79.59.49.39.49.3

乙:109108.39.89.5109.88.79.9

看到两名运动员的成绩,大家能否猜想一下,教练会选择谁去呢?

生1:我认为会选甲,甲的成绩很高。

生2:我想会选乙,乙打中10环的多。

生3:我想应该看看他们的平均分。

师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作)

生:老师,平均数一样,都是9.5。

师;平均数一样我们该怎么办呢?

生1:看众数。甲的众数是9.5。

生2:9.4也出现三次,9.4也是众数。那两个都是众数吗?

师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。

生:乙的众数是10,所以乙获胜的机会大一些。

师:在平均数相同时,我们应该看众数。

【设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。】

四、学生畅谈收获。

五:教师小结。

同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

案例反思:

1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性

2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的`角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。

人教版六年级下册数学教案【篇3】

1.自主解答

松鼠欢欢的尾巴有多长?怎样列式?你能计算出来吗?在练习本上试一试。(板书: ,学生尝试计算,教师巡视,请不同做法的学生板演。)

2.交流探讨,体会不同算法

先在小组内交流计算方法,再全班交流,一一展示,分析出现的不同计算方法。

(1)可以把2.1化成分数,再跟相乘,结果是,化成带分数。

(dm)

(2)可以把化成小数0.75,再跟2.1相乘,结果是1.575。

2.1× =2.1×0.75=1.575(dm)

【设计意图:本环节的交流分为两个层次,一个是在小组内交流,给每个学生参与的机会,使交流活动不至于成为个别学生的专场展示,尽可能让每个学生都说出自己的解题思路;二是全班交流,使全体学生在理解自己算法的同时,知道解决同一道题目还有不同的思路,享受不同算法带来的快乐,并掌握自己未考虑到的计算方法,逐步提高综合运用所学知识解决实际问题的能力。】

3.师小结:同学们说得都很不错,这道分数乘小数的题目我们主要采用两种方法来计算,既可以把小数化成分数再计算,也可以把分数化成小数再计算,这两种方法用到了我们学过的分数乘分数和小数乘小数的知识。

【设计意图:教师的这段简单小结以旧引新,促进知识迁移,巩固掌握新知识,实现了有意识的学法指导。】

人教版六年级下册数学教案【篇4】

一、创设情境,提出问题

师:同学们,你们知道一个人去找工作时,他一般最关注什么?

生:工资。

生:工作环境和待遇。

师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表:

某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I

月工资30002000900800700700600600600600500

问题1请大家仔细观察表中的数据,讨论回答下面的问题:

(1)副经理说月平均工资1000元是否欺骗了李叔叔?

(2)你有什么想法?

生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。

师:对,我们学过平均数的知识,平均数是1000元是没有错。

那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。

生:因为两位经理的工资很高,带动了员工的平均公资。

师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。

【设计意图:本环节痛过李叔叔在找工作时遇到的实际问题,使数学贴近生活,激发学生的兴趣,让学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。】

学生小组讨论:

生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。

生2:我认为700元比较合理,因为它是这组数据的中位数。

师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱?

生:600元

师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。

二、探究新知。

板书:众数。

【设计意图;本环节提出这样的问题,主要想通过工资表中出现次数最多的600理解众的含义,进而理解众数的意义。】

师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。

师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。

五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米)

1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

1.51,1.51,1.51,1.51,1.52,1.54,1.54

你认为参赛队员的`身高是多少比较合适?

学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。

【设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考,探究,讨论。交流中充分发表自己的意见,在实际问题中体会三个统计量的区别和他们各自的适用限度,让学生意识到生活中数学无处不在,感受和体会数学中美的因素】。

三、分析数据,尝试统计决策。

师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩)

甲:9.5109.49.59.79.59.49.39.49.3

乙:109108.39.89.5109.88.79.9

看到两名运动员的成绩,大家能否猜想一下,教练会选择谁去呢?

生1:我认为会选甲,甲的成绩很高。

生2:我想会选乙,乙打中10环的多。

生3:我想应该看看他们的平均分。

师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作)

生:老师,平均数一样,都是9.5。

师;平均数一样我们该怎么办呢?

生1:看众数。甲的众数是9.5。

生2:9.4也出现三次,9.4也是众数。那两个都是众数吗?

师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。

生:乙的众数是10,所以乙获胜的机会大一些。

师:在平均数相同时,我们应该看众数。

【设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。】

四、学生畅谈收获。

五:教师小结。

同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

案例反思:

1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性

2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。

人教版六年级下册数学教案【篇5】

一、游戏导入

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

人教版六年级下册数学教案【篇6】


六年级数学下册的知识1

负数

1、负数的由来:

为了表示相反意义的两个量(如盈利亏损、收入支出……),光有学过的0 1 3.42/5……是远远不够的。所以出现了负数,以盈利为正、亏损为负;以收入为正、支出为负

2、负数:小于0的数叫负数(不包括0),数轴上0左边的数叫做负数。

若一个数小于0,则称它是一个负数。

负数有无数个,其中有(负整数,负分数和负小数)

负数的写法:

数字前面加负号“-”号,不可以省略

例如:-2,-5.33,-45,-2/5

正数:

大于0的数叫正数(不包括0),数轴上0右边的数叫做正数

若一个数大于0,则称它是一个正数。正数有无数个,其中有(正整数,正分数和正小数)

正数的写法:数字前面可以加正号“+”号,也可以省略不写。

例如:+2,5.33,+45,2/5

4、0

既不是正数,也不是负数,它是正、负数的分界限

负数都小于0,正数都大于0,负数都比正数小,正数都比负数大

5、数轴:

6、比较两数的大小:

①利用数轴:

负数

②利用正负数含义:正数之间比较大小,数字大的就大,数字小的就小。负数之间比较大小,数字大的反而小,数字小的反而大

1/3>1/6 -1/3六年级数学下册的知识2

第二单元 百分数二

(一)、折扣和成数

1、折扣:用于商品,现价是原价的百分之几,叫做折扣。

通称“打折”。

几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,

六折五=6.5/10=65/100=65﹪

解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

商品现在打八折:现在的售价是原价的80﹪

商品现在打六折五:现在的售价是原价的65﹪

2、成数:

几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪

八成五=8.5/10=85/100=80﹪

解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪

今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

(二)、税率和利率

1、税率

(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

(2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

(3)应纳税额:缴纳的税款叫做应纳税额。

(4)税率:应纳税额与各种收入的比率叫做税率。

(5)应纳税额的计算方法:

应纳税额=总收入×税率

收入额=应纳税额÷税率

2、利率

(1)存款分为活期、整存整取和零存整取等方法。

(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

(3)本金:存入银行的钱叫做本金。

(4)利息:取款时银行多支付的钱叫做利息。

(5)利率:利息与本金的比值叫做利率。

(6)利息的计算公式:

利息=本金×利率×时间

利率=利息÷时间÷本金×100%

(7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

税后利息=本金×利率×时间×(1-利息税率)

购物策略:

估计费用:根据实际的问题,选择合理的估算策略,进行估算。

购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

学后反思:做事情运用策略的好处

六年级数学下册的知识3

第三单元 圆柱和圆锥

一、圆柱

1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

圆柱也可以由长方形卷曲而得到。

两种方式:

1.以长方形的长为底面周长,宽为高;

2.以长方形的宽为底面周长,长为高。

其中,第一种方式得到的圆柱体体积较大。

2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

3、圆柱的特征:

(1)底面的特征:圆柱的底面是完全相等的两个圆。

(2)侧面的特征:圆柱的侧面是一个曲面。

(3)高的特征 :圆柱有无数条高

4、圆柱的切割:

①横切:切面是圆,表面积增加2倍底面积,即S 增 =2πr?

②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

5、圆柱的侧面展开图:

①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

②不沿着高展开,展开图形是平行四边形或不规则图形

③无论怎么展开都得不到梯形

6、圆柱的相关计算公式:

底面积 :S底=πr?

底面周长:C底=πd=2πr

侧面积 :S侧=2πrh

表面积 :S表=2S底+S侧=2πr?+2πrh

体积 :V柱=πr?h

考试常见题型:

①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

烟囱通风管的表面积=侧面积

只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

侧面积+两个底面积:油桶、米桶、罐桶类

二、圆锥

1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。

圆锥也可以由扇形卷曲而得到。

2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高

3、圆锥的特征:

(1)底面的特征:圆锥的底面一个圆。

(2)侧面的特征:圆锥的侧面是一个曲面。

(3)高的特征:圆锥有一条高。

4、圆锥的切割:

①横切:切面是圆

②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

即S增=2rh

5、圆锥的相关计算公式:

底面积:S底=πr?

底面周长:C底=πd=2πr

体积:V锥=1/3πr?h

考试常见题型:

①已知圆锥的底面积和高,求体积,底面周长

②已知圆锥的底面周长和高,求圆锥的体积,底面积

③已知圆锥的底面周长和体积,求圆锥的高,底面积

以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

三、圆柱和圆锥的关系

1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

4、圆柱与圆锥等底等高

,体积相差2/3Sh

题型总结

①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

③横截面的问题

④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的 问题,注意不要乘以1/3

六年级数学下册的知识4

第四单元 比例

1、比的意义

(1)两个数相除又叫做两个数的比

(2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7、比和比例的区别

(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

用字母表示x/y=k(一定)

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

用字母表示x×y=k(一定)

10、判断两种量成正比例还是成反比例的方法:

关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

12、比例尺的分类

(1)数值比例尺和线段比例尺 (2)缩小比例尺和放大比例尺

13、图上距离:

图上距离/实际距离=比例尺

实际距离×比例尺=图上距离

图上距离÷比例尺=实际距离

14、应用比例尺画图的步骤:

(1)写出图的名称、

(2)确定比例尺;

(3)根据比例尺求出图上距离;

(4)画图(画出单位长度)

(5)标出实际距离,写清地点名称

(6)标出比例尺

15、图形的放大与缩小:形状相同,大小不同。

16、用比例解决问题:

根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

17、常见的数量关系式:(成正比例或成反比例)

单价×数量=总价

单产量×数量=总产量

速度×时间=路程

工效×工作时间=工作总量

18、

已知图上距离和实际距离可以求比例尺。

已知比例尺和图上距离可以求实际距离。

已知比例尺和实际距离可以求图上距离。

计算时图距和实距单位必须统一。

19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

答:每天播种的公顷数×天数=播种的总公顷数

已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。

六年级数学下册的知识5

第五单元 数学广角-鸽巢问题

1、鸽巣原理是一个重要而又基本的组合原理,

在解决数学问题时有非常重要的作用

①什么是鸽巣原理, 先从一个简单的例子入手, 把3个苹果放在2个盒子里, 共有四种不同的放法,

无论哪一种放法, 都可以说“必有一个盒子放了两个或两个以上的苹果”。 这个结论是在“任意放法”的情况下, 得出的一个“必然结果”。

类似的, 如果有5只鸽子飞进四个鸽笼里, 那么一定有一个鸽笼飞进了2只或2只以上的鸽子

如果有6封信, 任意投入5个信箱里, 那么一定有一个信箱至少有2封信

我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣, 可以得到鸽巣原理最简单的表达形式

②利用公式进行解题:

物体个数÷鸽巣个数=商……余数

至少个数=商+1

2、摸2个同色球计算方法。

①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

物体数=颜色数×(至少数-1)+1

②极端思想: 用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

③公式:

两种颜色:2+1=3(个)

三种颜色:3+1=4(个)

四种颜色:4+1=5(个)

Yjs21.Com更多幼儿园教案扩展阅读

人教版六年级下册数学教案8篇


经验告诉我们,成功是留给有准备的人。为了使每堂课能够顺利的进展,教师通常会准备好下节课的教案,大部分的教案都是为了让学生的学习效率得到提升,教案对教学过程进行预测和推演,从而更好地实现教学目标。那么一篇好的幼儿园教案要怎么才能写好呢?小编经过整理,为你编辑了人教版六年级下册数学教案8篇,欢迎分享给你的朋友!

人教版六年级下册数学教案 篇1

教学内容:

人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1、例2。

教学目标:

1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。

2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。

3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。

教学重、难点:

负数的意义。

教学设备:班班通

教学过程:

一、谈话交流

谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗?

二、教学新知

1.表示相反意义的量。

(1)引入实例。

谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(出示)。

①六年级上学期转来6人,本学期转走6人。

②张阿姨做生意,二月份盈利1500元,三月份亏损200元。

③与标准体重比,小明重了2.5千克,小华轻了1.8千克。

④一个蓄水池夏季水位上升米,冬季水位下降米。

指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。)

(2)尝试。

怎样用数学方式来表示这些相反意义的量呢?

请同学们选择一例,试着写出表示方法。

……

(3)展示交流。

……

2.认识正、负数。

(1)引入正、负数。

谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6-6),这种表示方法和数学上是完全一致的。

介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。

“-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。

像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。

(2)试一试。

请你用正、负数来表示出其它几组相反意义的量。

写完后,交流、检查。

3.联系实际,加深认识。

(1)说一说存折上的数各表示什么?(教学例2。)

(2)联系生活实际举出一组相反意义的量,并用正、负数来表示。

①同桌交流。

②全班交流。根据学生发言板书。

这样的正、负数能写完吗?(板书:……)

强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。

4.进一步认识“0”。

(1)看一看、读一读。

谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示)。

哈尔滨:-15℃~-3℃

北京:-5℃~5℃

深圳:12℃~23℃

温度中有正数也有负数,请把负数读出来。

(2)找一找、说一说。

我们来看首都北京当天的温度,“-5℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5℃又表示什么?

你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么?

现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。)

说一说,你怎么这么快就找到了?

(配合演示:先找0℃,在它的下面找-5℃,在它的上面找5℃。)

你能很快找到12℃、-3℃吗?

(3)提升认识。

请学生观察温度计,说一说有什么发现?

在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。)

“0”是正数,还是负数呢?

在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。

(4)总结归纳。

如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类:

(完善板书。)

5.练一练。

读一读,填一填。(练习一第1题。)

6.出示课题。

同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗?

根据学生的回答总结本节课所学内容,并选择板书课题:认识负数。

7.负数的历史。

(1)介绍。

其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(配音播放):

“中国是世界上最早认识和运用负数的国家,早在20xx多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!”

(2)交流。

简单了解了负数的历史,你有什么感受?

三、练习应用

今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。

逐一出示:

1.表示海拔高度。(“做一做”第2题。)

通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。

2.表示温度。(练习一第2题。)

月球表面白天的平均温度是零上126℃,记作_________℃,夜间的平均温度为零下150℃,记作_____________℃。

3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢?

4.表示时间。(练习一第3题。)

5.“净含量:10±0.1g”表示什么意思?

四、总结延伸

1.学生交流收获。

2.总结。

简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。

人教版六年级下册数学教案 篇2

教学内容:

教材第11页的例2.第12页的例3和第12页的“练一练”,完成练习二第4~6题。

教学目标:

1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。

3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

重点难点:

1.理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

2.培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

教学资源:

师生各备一易拉罐,并把上下面用彩纸包好,剪刀、胶水、圆规、白纸一张、计算器。

教学过程:

一、实验导入,渗透思想

⒈(出示一张长方形纸)老师这儿有一张长方形纸,我想让它站起来,你有什么办法吗?

小结:原来在一定条件下平面可以“化直为曲”。

⒉把这个圆柱形的纸筒打开后是什么形状?

小结:同样地,在一定条件下曲面可以“化曲为直”。

⒊揭题:这节课将运用这个知识来研究圆柱的侧面积和表面积。(板:圆柱的侧面积和表面积)

二、引导探究,学习新知

(一)圆柱的侧面积的计算。

老师发现同学们特别爱喝饮料,今天我们共同带来了一瓶椰子汁,看到它,你能提出什么数学问题来?

师引导:我们就来先来解决这位同学提出的商标纸问题,其实就是求什么?(圆柱的侧面积)

1.引导探究圆柱侧面积的计算方法

①设疑:圆柱的侧面是个曲面,怎样计算商标纸的面积呢?

②全班交流:沿着接缝把商标纸剪开,再展平。

③小组合作探究

那就让我们一起来研究一下,听清要求:先独立剪开商标纸展开,再观察展开后的图形与原来的圆柱有什么关系?把你的发现在小组里交流一下。接头处忽略不计。

④汇报交流:哪个小组愿意上来汇报一下你们的发现?指名上台拿着学具汇报,生。(师再追问:通过刚才同学的汇报,我们知道了这个长方形的长和宽与圆柱有什么关系呀?学生回答,师适时板书)

⑤怎样计算圆柱的侧面积?再次追问:为什么?(补充板书)

⑥小结:你们真不错,巧妙地运用化曲为直,探讨发现了圆柱侧面积的计算方法。

2.计算圆柱的侧面积

①现在请你计算一下这罐椰子汁所用商标纸的面积(出示椰奶罐的底面周长约是 厘米,高约是 厘米)你是怎样算的?

②解决例2

但在实际生活中有时不直接告诉你底面周长,例如怎么算?学生独立做在书上,指名一生板演,集体反馈。

③思考:要求一个圆柱的侧面积,通常需要知道哪些条件?

④小结:如果没有直接告诉底面周长,应用已知直径(或半径)求周长的方法,然后求侧面积。

(二)探索圆柱表面积的计算方法

1.理解圆柱表面积的含义

①动手贴出圆柱表面积:拿着实物,光这样一个侧面能装饮料吗?还需加上(两个底面)我们把这个圆柱饮料罐各部分一一展开粘在纸上(学生动手操作,师巡视发现两种常见粘法)交流展示,最好这样放。

看着圆柱展开图,让它在头脑中动起来(长方形的长等于…宽等于…)这样我们可以更清楚地想象出长方形与圆柱的关系。

指着图,由这些些部分组成了圆柱的表面积,什么是圆柱的表面积?(板书)

②动手画出圆柱表面展开图:下面我们要画圆柱的展开图,画前先算一算,学生算好后回答,师板书。

要求画在书上的方格纸上,友情提醒:一要想要画出圆柱的哪几个面?二要注意每个方格纸边长厘米,根据算的数据合理布局。(实物投影展示学生作品,作评价)

2.怎样计算圆柱的表面积?

①例3中的圆柱表面积会算吗?

独立做在书上,交流反馈:每步求出的是什么?指出:解答时为清楚最好分步算出各部分面积。

②出示易拉罐的数据,图例:半径:2.5厘米,高:12厘米,求铁皮用料。

③要求一个圆柱的表面积,通常需要知道哪些条件?

三、应用练习,巩固深化

过渡:在实际生活中,有很多圆柱体实物,你会根据实际算出它们要求的面积吗?

1.教材第12页“练一练”(理解题意要求的是圆柱的哪部分面积后独立做)

2.练习二第6题。(通过填表帮助学生进一步区分圆柱的侧面积、底面积、表面积三个不同的概念和不同的算法;整理侧面积、底面积与表面积之间的联系,使计算圆柱表面积的思路更加清楚)

四、全课总结,认识升华

通过今天这节课的学习,你有哪些收获?还有什么问题吗?

五、课堂作业

练习二第4.5题。

频道小编推荐: |

人教版六年级下册数学教案 篇3

教学目标

1、理解圆柱体积公式的推导过程,掌握计算公式。

2、体会数学转化思想,培养学生探究意识恒文观察、操作、分析和概括能力,能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

3、感受探索数学奥秘的乐趣,培养学习数学的积极情感,

教学重难点

教学重点:

掌握和运用圆柱体积计算公式

教学难点:

圆柱体积公式的推导过程

教学过程

一、复习导入

同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

出示学习目标:

理解圆柱体积公式的推导过程,掌握计算公式,体会数学转化思想。

能运用公式计算圆柱的体积,并能应用公式解决一些实际问题。

二、图柱转化,自主探究,验证猜想。

(一)猜想。

1、下面长方体、正方体和圆柱的底面积都相等,高也相等

(1)。长方体和正方体的体积相等吗?为什么?

(2)。猜一猜,圆柱的体积与长方体、正方体的体积相等吗?用什么办法验证呢?

2、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

[数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

3、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

(二)操作验证。

1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

在操作时,学生分组边操作边讨论以下问题:

①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

?。拼成的近似长方体的高与原来的圆柱的高有什么关系?

2、小组代表汇报

(学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

3、电脑演示操作

(1)电脑演示圆柱体转化成长方体的过程:

仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

(分的分数越多,拼成的图形就越接近长方体)

(2)根据学生的观察、分析、推想,老师完成板书:

长方体的体积=底面积×高

圆柱的体积=底面积×高

V=Sh

(3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

三、练习巩固,灵活应用

闯关1.

1、填表。(课件)

2、一根圆柱形钢材,横截面的面积是50平方厘米,长是2米。它的体积是多少?

让学生试做,集体反馈。

闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

学生讨论、交流、汇报。

小结:解决以上问题的关键是先求出什么?(生:底面积)

闯关3.

1、把一个圆柱的底面分成许多相等的扇形,然后把圆柱切开,可以拼成一个近似的(),它的底面积等于圆柱的(),高就是()的高,因为长方体的体积等于底面积乘高,所以圆柱的体积等于()乘(),用字母表示是()。

2、圆柱底面半径为r厘米,高为h厘米,体积v=()立方厘米

学生在练习本上独立完成,集体反馈。

3、我是小法官

1、正方体、长方体、圆柱体的底面积和高相等,他们体积也相等。()

2、长方体、正方体、圆柱体的体积都可以用底面积乘高的方法来计算。()

3、圆柱体的底面积越大,它的体积越大。()

4、圆柱体的高越长,它的体积越大。()

5、如果圆柱体的底面半径扩大2倍,高不变,体积也扩大2倍。()

4、填空

1、一个长方体和一个圆柱的体积相等,高也相等,那么它们的底面积()。

2、一根横截面面积是10平方厘米的圆柱形钢材,长是2米,它的体积是()立方厘米。

拓展:把一根圆柱形木材横截成2段,表面积增加16平方厘米,它的底面积是多少平方厘米?如果这根木材长2.5米,它的体积是多少立方厘米?

四、课堂小结

学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

五、布置作业

教科书第21页练习三第1-4题。

人教版六年级下册数学教案 篇4

【教学目标】

1.在观察、交流、操作等活动中,经历认识圆柱和圆柱侧面展开图的过程。

2.认识圆柱和圆柱侧面展开图,会计算圆柱的侧面积。

3.积极参与学习活动,愿意与他人交流自己的想法,获得学习的愉快体验。

【课前准备】

教师准备一个带商标纸的茶叶桶、剪刀、小黑板或课件。学生每人准备一个圆柱体实物、剪刀、线绳等。

【教学设计】

一、创设情境导入

1、谜语导入引出圆柱。上下一样粗,放倒一推骨碌碌。(板书:圆柱)

2、(课件出示书中的情境图)师:上面哪些物体的形状是圆柱?(指名说)

3、拿出你准备的圆柱形物品,举起来,大家互相检查,看看你们准备的都是圆柱吗?(教师也要认真观察及时发现不符的,如果有让学生说说为什么?)生活中,还有哪些物体的形状是圆柱?(指名说)预设:铁皮水桶、烟囱……

二、体验探究

1、认识圆柱

拿起你的圆柱,仔细观察,你发现了:圆柱有多少个面?再用手摸一摸,这些面有什么特点?也可以在桌上轻轻地滚一滚。

(1)学生观察,并用手摸表面、滚一滚。

(2)集体交流。好了,放好你的圆柱。你观察到圆柱有哪些特征?(指名说)

预设:

2、我发现了圆柱有三个面。(师:用手指一指都有哪三个面)

3、我发现了圆柱的的上下两个面是完全相同的两个圆。(师:同意吗?那你们怎么知道这两个圆完全相同呢?有没有办法验证一下?(指名说)教师总结:圆柱的上下两个面叫做圆柱的底面,它们是完全相同的两个圆。(并板书:2个底面相等)

4、我发现了圆柱还有一个面,(师:这个面有什么特点?和上下两个底面有什么不一样?)教师在学生发言的基础上总结:圆柱的这个曲面,叫做侧面。(并板书:曲面)

5、刚才大家观察的非常认真,那我们回忆一下长方体和正方体都有(高),那圆柱有高吗?(有)谁来用手指一指或者用语言描述一下什么是圆柱的高?(指名说)

那你们认为一个圆柱有多少条高?(无数条)而且它们的长度怎么能样?(相等)

(3)刚才通过大家认真的观察,我们发现了圆柱的特征,下面我们一起来回顾一下:圆柱有两个(底面),它们是完全相同的(两个圆);圆柱还有一个(曲面),叫做它的(侧面)。圆柱有无数条高。

6、圆柱的侧面积

(1)(出示)师:老师这里也有一个(圆柱)形状的茶叶桶,教师指圆柱的各部分学生说名称?

(2)那大家猜想一下:如果我们把这个茶叶桶的商标纸沿着一条高剪开,展开后会得到一个什么图形?(指名说)

预设:长方形、正方形

(3)那么大家猜想的对不对呢?下面就请大家睁大眼睛,我们一起来验证一下。(教师操作,学生观察)什么形状?(一起说)

师:对,我们把这个圆柱形茶叶桶的商标纸沿着一条高剪开,就得到了一个(长方形),也就是说这个圆柱的侧面展开后是一个(长方形)

(4)下面请同学们认真观察,仔细的想一想

我们得到的这张长方形纸与茶叶桶的侧面有什么关系?

①同桌互相讨论一下。

②集体交流。(指名说,教师随即板书)

长方形的面积长宽。

圆柱的侧面积底面周长高。

(5)因为长方形的面积=长×宽,所以圆柱的侧面积=底面周长×高

这就是我们一起推导出来的圆柱的侧面积公式,来,一起读两遍,记住它。

如果说我要求圆柱的侧面积需要知道什么条件?(圆柱的底面周长和高)

三、实践应用

1、这个茶叶桶,如果让你求它的侧面积,我们需要哪些数据?指名测量,并计算。

2、29页1、2题。

四、课堂小结

通过这节课的学习,你对圆柱有一些认识了吗?你都有什么收获?(指名说)

五、拓展延伸

在我们推导圆柱的侧面积公式的过程中,我们是将圆柱的侧面沿着一条(高)剪开,得到了一个(长方形),从而根据长方形的面积公式推导出了圆柱的侧面积公式。那大家想一想,如果我们将圆柱的侧面沿一条斜线剪开,会得到一个什么图形呢?那根据这个图形,你也能推导出圆柱的侧面积公式吗?大家课下动手去试一试。

人教版六年级下册数学教案 篇5

教学目标:

1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。

2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。

3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。

4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

教学重点:

理解百分率的含义,掌握求百分率的方法。

教学难点:

探究百分率的含义。

教学用具:

PPT课件

教学过程:

一、复习导入(8分)

1、出示口算题,1分钟,并校正题目。

2、小结学生所提问题,并指名口头列式。

3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

4、小结:算法相同,但计算结果的表示方法不同。

5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。

6、口算比赛:(1分钟)(见课件)

7、根据口算情况,提出数学问题。(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)

8、尝试解答修改后的问题。

9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?

10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。

二、设问导读(9分)

1、说明达标率的含义。

2、板书达标率的计算公式,并说明除法为什么写成分数的形式?

3、组织学生以4人小组讨论。

4、巡回指导书写格式。阅读例题,思考下面的问题

(1)什么叫做达标率?

(2)怎样计算达标率?

(3)思考:公式中为什么要“×100%”呢?

(4)尝试计算例1的达标率。

三、质疑探究(5分)

1、在展示台上展示学生写出的百分率计算公式。

2、要求学生认真计算,并对学生进行思想教育。

①生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?

②求例1(2)中的发芽率。

四、巩固练习(14分)

1、指名口答,组织集体评议,再次引学生巩固百分率的含义。

2、对每一道题都要让学生分析、理解透彻,并找出错误原因。

3、出示问题,指导学生书写格式,并强调

4、解决问题要注意:看清求什么率?找出对应的量。

5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?

6、引学生观察、发现:出勤率+缺勤率=1.

五、加强巩固

1、说说下面百分率各表示什么意思。(1颗星)

(1)学校栽了200棵树苗,成活率是90%。

(2)六(1)班同学的近视率达14%。

(3)海水的出盐率是20%。

2、判断。(2颗星)

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。()

(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。()

(3)把25克盐放入100克水中,盐水的含盐率为25%。()

(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。()

3、解决问题(3颗星)

(1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?

(2)六(1)班今天有48人到校,有2人缺席,求出勤率。

(3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?

(4)王师傅加工的300个零件中有298个合格,合格率是多少?

人教版六年级下册数学教案 篇6

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的`3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版六年级下册数学教案 篇7

人教版六年级下册《几何初步知识》数学教案

教学目标

1.使学生熟练掌握平行四边形、三角形、梯形的特征,面积计算及应用。

2.培养学生识图能力及应用概念解决实际问题的能力。

3.培养学生思维的空间想象力。

教学过程设计

(一)宣布课题

我们已经学过平行四边形、三角形和梯形。为了让大家更好地掌握这部分知识,以便熟练地运用它解决实际问题,今天我们上一节平面几何图形复习题。(板书课题:平面几何图形复习课)

(二)复习过程

1.指出下面各是什么图形?

2.长方形、正方形。

(1)出示长方形图。

问:这是什么图形?它有什么特征?

面积怎么求?

板书:S=ab

(2)如果长方形的长和宽相等后,就变成什么图形?它的特征是什么?面积怎么求?

板书:S=a2

(3)平行四边形。

出示平行四边形图。

什么样的图形叫平行四边形?

指出它的底和高。

面积公式是什么?怎样推导出来的?

指名口述推导过程,并说明只要沿着平行四边形的高线割开的两部分都可以拼成长方形

(图略),从而推导面积公式。

板书:S=ab

(4)三角形。

出示连接两条对角线的平行四边形图片,割开后引出三角形。

指出三角形的底和高。

三角形的三条边都可以做底,对应几条高?

三角形的面积怎么求?

板书:S=ab2

(5)梯形。

①由平行四边形引入梯形。

②梯形有什么特征?面积怎么求?

板书:S=(a+b)h2

是怎样推导出来的?(指名说,老师用完全一样的梯形图片拼平行四边形推导面积。)

③复习特殊梯形:直角梯形、等腰梯形。

(6)小结:刚才我们复习了平行四边形、三角形、梯形的特征及面积,现在利用公式计算。

(三)课堂练习

1.列式口算下列图形面积。(单位:dm)

2.填表。(面积单位:m3;长度单位:m。)

3.求下图阴影部分的面积:

思考题:

计算下面图形的面积。(用不同的方法)

(单位:cm)

(四)总结

这节课我们通过复习发现图形面积公式之间的联系,复习了求三角形、平行四边形和梯形的面积。

课堂教学设计说明

这节课老师借助直观图形在学生头脑中形式的表象,进行知识之间的沟通与整理,这样在学生掌握了这些图形的基本特征和面积的计算方法的同时,培养学生的空间观察能力。

练习设计有层次:先是基本图形求面积,然后给数据填表,求阴影面积,求组合图形面积。使学生对所学的知识能够综合运用。

人教版六年级下册数学教案 篇8

一、游戏导入

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

六年级下册的小学数学教案人教版


作为杰出的教学工作者,为了教学顺利的展开。每位老师都会提前准备一份教案,以便于提高讲课效率。让同学听的快乐,老师自己也讲的轻松。如何才能编写一份比较全面的教案呢?我们特地为您收集整理“六年级下册的小学数学教案人教版”,欢迎大家阅读,希望对大家有所帮助。

六年级下册的小学数学教案人教版(篇1)

教学目标:

1.通过复习使学生进一步理解和巩固分数及面积知识,并能运用所学的知识和方法解决简单问题。

2.通过小组合作知识,培养学生系统地、有条理地梳理知识的能力,形成自主学习的习惯。

3.创设情境,让学生发现问题、探讨解决问题的策略,培养学生合理的数学思考。

4.使学生进一步体验数学在日常生活中的作用,增强学数学、用数学意识。

教学重点:

1、复习”面积“和”认识分数“两个单元所学的相关知识和技能。

2、提高学生解决实际问题的能力,发展学生的数学素养。

教学难点:看图想象提问题,能交流、合作、梳理、概括地学数学。

教具准备:课件、彩笔、智慧星(奖品)

教学过程:

一、情境激趣,引入复习

师:今天是笑笑的生日,妈妈给她买了一个大蛋糕,笑笑请好朋友来吃蛋糕。他们又唱歌又跳舞可热闹了,我们一起去看看。(播放课件一)好一个又香又甜的蛋糕呀!

猜一猜笑笑把这个蛋糕平均分成了几块?这分吃蛋糕的情境使你们想到了曾经学过的哪方面的知识?这节课我们就来复习知识。

(评析创设”笑笑过生日“的情境,引出复习内容(分数的认识),启发学生,对学生的学习起到导向和激励的作用。)

二、分数知识,探求问题

1.小组交流(教材第67页1题、2题)

2.运用知识,解决问题

(1)闯关

看谁硕果累累,每闯一关可获得一颗智慧星。

第一关:独立完成教材67页第3题,互相讲解、互相检查、互相。

第二关:完成教材67-68页第4题、第6题,讲解计算方法,自我。

(2)问题接龙

①创设情境。

(继续播放课件1)笑笑把蛋糕平均分成8块,自己吃了一块,冰冰吃了3块,永全吃了2块。

②小组内自编问题。要求根据情境编出有关分数的问题。

③由小组轮流报题,全班抢答,答对一题可获得一颗智慧星。

(3)清查获奖个数,同桌互说收获与不足。

三、面积知识,实际应用

1.继续创设情境,引入复习

今天笑笑过生日,俊伟怎么没来?他在忙什么呢?我们到他家去看一看。(播放课件二:俊伟铺地砖。)原来他在做自己力所能及的事,真是个热爱劳动的好孩子。看到俊伟铺地砖的情境,猜一猜他可能用到哪一方面的知识?

2.知识,加深理解(教材68页第5题)

(1)小组合作出有关面积的知识。

(2)小组汇报,全班交流。

3.应用知识,提高能力

(1)粗心的俊伟

俊伟收集了一些面积数据,可是忘了写单位。

①请你选择合适的面积单位填空。

②与同桌交流,。

(2)洒水车(教材68页第7题)

今天天气比较热,看,开过来一辆洒水车,路面变得湿润了。(播放课件)这里面还有许多数学问题呢!

(3)帮助俊伟解决问题

①播放俊伟铺地砖,猜测可能遇到什么问题。

A.俊伟房间的面积有多少平方米?

B.需要铺多少块边长为20厘米的地砖?

C.如果一块地砖3元钱,需要多少钱?

②挑战问题,巧妙解答。

(4)发散思维、摆火柴棍(教材68页第9题)

四、回顾自查,自我

师:这节课复习了有关分数和面积的知识,复习应用中,你对这部分知识掌握的情况进行检查,情况如何?

六年级下册的小学数学教案人教版(篇2)

第四课时 小小养殖场

第五课时:练习一

教学目标:

1、在具体情境中进一步掌握数的组成和写法。

2、进一步体会“多一些、多得多、少一些、少得多、差不多”的含义。

3、进一步掌握100以内数的读写,巩固数位的概念。

4、能正确比较几个数的大小。

教学重点:理解五个词语的含义。

教学难点:写数、读数、比较

教学过程:

一、指导第1题

先让学生自己填写,再让学生说一说第4小题是怎么想的?

二、指导第2题

1、看图说说谁最多谁最少?

2、用“( )比( )多得多,( )比( )多一些”等的句式说一说。

三、指导第3题

1、学生自由选择。

2、说说为什么选这个数?另几个数为什么不可以?

四、指导第4题

1、师拨生写,同桌检查。

2、选几个数说一说你为什么这么写?

3、拿出学具,同桌之间进行你拨我写,相互检查,师巡回指导。

五、指导第5题:拨一拨,比一比。

先师生间进行再学生间进行。

六、指导第6题

1、拿出卡片,让学生自由组数,并把数写下来。

2、同桌交流你组合成了哪些数?

3、说一说在这些数中,最大的数是多少?最少的数是多少?并为这些数排排队。

七、课堂总结。

六年级下册的小学数学教案人教版(篇3)

教学目标:

1、结合具体实例,在观察、讨论、操作的活动中,经历判断图形平移和在方格纸上按要求将图形平移的过程。

2、能判断图形的平移,能在方格纸上将简单的图形按要求平移。

3、在探索平移的过程中进一步发展空间观念。

教学重难点:

1、能在方格纸上按要求将图形平移。

2、进一步发展空间观念。

教学准备:

了解生活中的'平移现象。

课前修改:

教学过程:

一、平移现象

1、让学生观察图片,说一说这些事物重有哪些平移。

2、提出兔博士的问题,学生交流生活中的平移现象。

二、判断平移

1、(1)题学生先观察数红的两组图,说一说有什么,发现了什么,然后判断哪些图形通过平移可以互相重合,重点说一说图形是怎样平移的。

2、(2)题安排两个环节。

1)先让学生弄清题的要求,然后在书中独立完成。

2)交流展示涂色后的图形,重点说一说自己是怎样判断的。

三、平移图形

1、让学生在书中岸(1)题的要求画出图形,重点交流画的方法。

2、鼓励学生自主完成(2)题,集体交流。

练一练

1、给学生充分的作图时间,师巡视辅导后进。

2、有余力学生独立完成

教后反思:

六年级下册的小学数学教案人教版(篇4)

教学目标:

1、在具体的生活情境中,感知和了解千米的含义,建立1千米的长度观念。

2、知道1千米=1000米,能进行千米与米之间的换算。

3、能解决一些有关千米的实际问题,体验千米的应用价值。

教学准备:多媒体课件

学生课前活动:①走100米,数数大约有几步。②走200米,看用多长时间。③了解交通工具的一般速度。

教学过程:

一、复习导入:

谈话:小朋友们,听说过五指山吗?西游记里如来佛的手掌就叫五指山,在数学王国里,也有一座五指山,住着长度单位五兄弟。

1、复习已学过的四个长度单位。

(学生比出1米、1分米、1厘米、1毫米有多长;说出表示的符号并板书;说出相邻两个长度单位间的进率都是10。)

2、填入合适的长度单位。

世界上最小的鸟体长约2( );世界上最高的建筑高约452( );

世界上最矮的'成人高约8( );世界上最薄的笔记本电脑厚约15( )。

导入:拇指峰上住着谁呢?

二、认识千米:

1、生活中的千米

(1)板书课题:认识千米(公里 KM)

千米在生活中有着广泛的用途,你曾在那里听过或看过千米?

(2)播放相片:这是曹老师在从无锡到宜兴的高速公路上拍摄到的一些镜头,你了解到哪些信息呢?

①指路标志:(距宜兴?千米) ②限速标志:

③汽车的里程表、时速表: ④地图:

(3)千米是一个长度单位,常用来计量比较长的路程,也可以表示交通工

具每小时行驶的路程。

①除了汽车,你还知道哪些交通工具每小时行驶的路程可以用千米作单位?

②哪些物体的长度可以用千米作单位?

(4)小结:学到这儿,你对千米这个长度单位产生了什么初步印象?

2、教学1千米与1000米:

现在大家一定很想知道1千米到底有多长,一起来看:

(1)播放录象:(走100米的镜头)看,这是我们昨天在操场上活动时拍的录象,我们数了数,走100米大约要200步。

板书:走200步的路约是100米

(走200米的镜头)现在走了200米,大约花了3分钟?

板书:走3分钟的路约是200米

(闭上眼睛想一想100米有多长),下面的小志愿者们走的路就更长了,我们一边看,一边认真数一数:他们一共走了几个100米?

(录象快放部分学生走10个100米的镜头)

(2)同学们想一想:把这10个100米连起来,该有多长啊!把答案写在纸上好吗?

板书:1千米 1000米 这两种写法都对吗?为什么?它们表示的长度虽然是一样的,可也有不同点,你发现了吗?

1千米=1000米,读来不易区分,你能巧用停顿,把它们区分开吗?

(生读)

(3)小结:1千米是1米的1000倍,所以千米与米之间的进率是1000。

3、感知、体会1千米

(1)咱们学校的跑道一圈长200米,( )圈是1千米。有的学校的跑道一圈长250米,( )圈是一千米,如果是400米一圈,( )是一千米。

(2)在脑子里猜测想象一下:在你熟悉的路段中,从哪里到哪里可能是1千米?

(3)让我们跟着摄像机镜头到校门外的大街上去走一走,看看一千米究竟有多长?(播放录象)

请学生闭眼在脑海里把这段路走一遍。

(4)估计:看了录象,你知道从哪里到哪里大约是1千米呀?你们怎么估计1千米的距离?先自己想一想,再在小组里说一说。(组内讨论)

板书:人走15分钟的路约是1千米

人走20xx步的路约是1千米

汽车行驶1分钟的路大约是1千米

(5)建议学生课后用这些方法验证刚才的猜测想象。

(6)引导:那我们班哪个同学的家到学校的距离大约是1千米呢?你是怎么知道的?

(7)曹老师家离学校约有4千米的路程,如果你是曹老师,会选择什么交通工具去上班?简述理由?

(8)森林公园

看了画面,你知道哪些信息?26千米远吗?你会怎么去森林公园?

(9)小结:学到这儿,大家肯定对千米产生了深刻的印象,能谈谈你的收获吗?

三、巩固新知,实际应用:

(1)你们的收获可真多,我来考考你:

4千米=( )米 3000米=( )米

9千米=( )米 6000米=( )米

(2)小朋友们看过国庆50周年的阅兵式吗?让我们一起来回顾一下其中的一些精彩片段。(完成填单位)

(3)咱们中国的铁路也很发达,估计铁路的长度:(想想做做6)

(663 1157) (组内交流估计方法与结果)

(4)三( )班千米录

四、总结全课:

今天,我们认识了一个新的长度单位千米,它就是公里,也可以用㏎表示。它住在五指山的拇指峰上。伸出你的左手,掌心向自己,看,你也有一座五指山,有了它,你就可以牢牢地掌握长度单位间的关系了。

六年级下册的小学数学教案人教版(篇5)

教学内容:概括分数可以化成小数的规律。

教学目标:

使学生掌握最简分数能否化成有限小数的特征,并能正确的进行判断。

教学过程:

一、复习

1、怎样把小数化成分数?

2、怎样把分数化成小数?

二、教学新课

1、让学生把下面的分数化成小数,(除不尽的保留两位小数)

1/21/3.3/42/55/68/153/22

5/82/97/101/129/144/253/40

能化成有限小数的分数不能化成有限小数的分数

三、引导观察

(1)观察两个框内的分数,各有什么特征?(他们是最简份数)

(2)把这些份数的分母分别分解质因数。

(3)再次观察这些份数的分母有什么特点。

(4)师生共同归纳

(5)议一议

(6)请每个同学举出两个例子,验证一下刚才概括的这个特征是否正确。

四、应用这些特征判断哪些分数能化成有限小数,哪些不能。

五、巩固练习

六、布置作业

六年级下册的小学数学教案人教版(篇6)

学习内容:

教材43页例2,练习十一第4、5题

学习目标:

1、能熟练地求平均数

2、会根据平均数简单地分析问题

3、知道平均数能较好地反映一组数据的总体情况

学习重点:

根据平均数简单地分析问题

学习难点:

比较平均数,得出新的信息

学习准备:

统计图、记录卡、小黑板

学习流程:

一、导入

什么是平均数,怎样求平均数?

二、学习交流

1、课件出示例2图片

(1)从图片上你知道了哪些信息?

(2)哪个队要高一些?

(3)怎样才能知道哪个队高一些?

点拨:观察事物不能光靠眼睛看,还要科学地算一算

2、出示欢乐队和开心队身高记录表

说一说你知道了哪些信息?

小组内算一算两个队的平均身高,交流展示自己的算法

(148+142+139+141+140)5

=_____5

=_____(厘米)

(144+146+142+145+143)5

=_____5

=_____(厘米)

3、比一比

通过计算的结果看出( )了要高一些

点拨:平均数能较好地反映一组数据的总体情况。

4、出示练习十一第4题

(1)从统计图上你知道了什么?

(2)哪种饼干第一季度月平均销售量多?多多少?

(3)计算平均数,比一比

5、猜测

(1)哪种饼干销量越来越大?

(2)分析原因。

6、从统计图中你还得到什么信息?

三、展现提升

1、展示自己的学习收获。

2、交流算法。

3、提问、补充。

四、达标测评

练习十一第5题

五、总结归纳

1、通过今天的学习,你有什么收获?

2、通过求平均数,我们还可以得到很多新的信息

六年级下册的小学数学教案人教版(篇7)

教学内容:

人教版五年级数学上册第六单元《中位数》教材第105页例4、第106页例5及部分习题。

教学目标:

1、知识与技能:通过教学使学生理解中位数在统计学的意义,学会求中位数的方法。了解中位数与平均数的联系与区别,会根据数据的具体情况合理选择统计量。

2、过程与方法经历中位数的认识计算过程,体验合作探讨,理解认识的学习方法,培养学生全面多角度分析问题的意识和初步的统计观念。

3、情感态度价值观在学习活动中,感受数学知识在现实生活中广泛应用,激发学习兴趣,增强学生在生活中的数学意识,培养学生热爱体育运动的良好情感。

教学重点:

理解中位数的意义,掌握中位数的计算方法。

教学难点:

掌握求偶数个数据的中位数的方法。

教法学法:

创设情境、质疑引导、引导与讲解相结合。小组合作探究,自主实践体验。

教学准备:

多媒体课件

教学过程:

一、复习准备

1、师生谈话导入。

2、课件出示

王丽同学1分钟跳绳比赛成绩如下表

次数第一次第二次第三次第四次

成绩124108136132

她这四次测试的平均成绩是多少?

理解题意,让学生独立解答、汇报。

二、创设情境,生成问题

下面让咱们去看看五(1)班7名同学正在进行的掷沙包比赛,他们的成绩如何呢?(出示教材第105页例4情景图)

设疑:老师知道这组学生中有一名同学叫刘云,他的成绩是25.8米,你们猜猜他在这组中可能排在第几?

三、探索交流,解决问题

1、出示五(1)班7名同学掷沙包成绩统计表。

姓名李明陈东刘云马刚王朋张炎赵丽

成绩/m36.834.725.824.724.624.123.2

从他们的成绩表中你得到了哪些信息?刘云同学排在第几?为什么刘云的成绩比平均数低,还能排在第三呢?

引导学生观察,小组内交流。

师:这组数据中,只有两个数比平均数大,有五个数都比平均数小,用平均数表示他们掷沙包的一般水平合适吗?(不合适)想想办法:从这组数据中挑出一个数代表他们掷沙包的水平,自己找一找,和同桌说一说。

学生这是可能有些困难,教师适时引导学生认识中位数。

设计意图(创设问题情景,激发学生学习兴趣,通过估计,计算比较,发现用平均数表示一般水平不合适,从而引入新的内容——中位数,符合学生认知规律,进一步激发学生的求知欲望)

2、介绍中位数

平均数与一组数据中的每个数据都有直接关系,任意一个数据大小的变化都会对平均数值都会产生影响,为弥补平均数在描述某数据组的不足,下面就让我们一起来认识一位新朋友——中位数。顾名思义,中位数就是把一组数据按大小顺序排列后,位置居最中间的数据它的优点是不受偏大偏小数据的影响。

师:那么,五(1)班7名同学掷沙包成绩的这组数据中的中位数是多少呢?

生动手尝试,按大小排列找出中位数24.7 。

师小结求中位数的方法

a 、按大小顺序排列 b、最中间的数据

设计意图(让学生认识理解,体验求中位数的过程,掌握求中位数的方法,并理解中位数在统计学中的意义。)

3、小结:平均数和中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,最好选用中位数来表示这组数据的一般水平。

4、教学例5

出示例5:五(2)班7名男同学的跳远成绩表

姓名李志强陈文王文贤赵军张鹏刘卫华于国庆

成绩/m3.062.902.743.522.832.892.78

师问:用什么数来表示这一组数的一般水平呢?

(1)让学生分别求出这一组数据的平均数和中位数。

(2)同桌之间议一议,说一说。

2.96比这一组数据中大多数数据都高,用它来表示这组数据的一般水平不合适,应选中位数。

(3)如果再增加一个同学杨东的成绩2.94m,这组数据中的中位数是多少?

小组内讨论,全班交流。

得出结论:一组数据中有偶数个数的时候,中位数是最中间两个数的平均数。

5、知识小结。

设计意图(学生在小这合作中自主探究发现知识规律,并动实践求平均数,中位数,培养学生自主学习的能力,同时使学生进一步理解中位数的意义。)

三、巩固应用,内化提高

1、基本练习。

2、教材第107页练习二十三第1题

生读题,小组讨论,共同解答,汇报交流。

3、教材第107页练习二十三第2题

学生讨论自由解答。

四、回顾整理,反思提升

通过这节课的学习你学会了什么?你有哪些收获?

板书设计:

中位数

例4 例5

中位数 24.7 2.89 (2.89+2.90)/2=2.895

按大小顺序排列

数据个数奇数:最中间的数据 数据个数偶数:最中间两数的平均数

教后反思:

教材中通过结合生活实际来比较平均数,从而产生中位数的教学的必要性。本人循着教材的思路和自身的理解设计了“平均数有时不能正确反映中等水平,有时能—— 发现概括平均数时候不能正确反映中等水平——该用什么数表示,学习中位数——中位数与平均数的关系,——在练习中分散难点,进一步理解为什么有时候平均数不能正确反映中等水平,而中位数则可以,深入理解中位数的稳定性。

六年级下册的小学数学教案人教版(篇8)

一、教学内容

苏教版义务教育课程标准实验教科书《数学》四年级(下册)第37页~38页。

二、教学目标

1.使学生在解决问题的过程中理解和掌握含有小括号的三步混合运算的运算顺序,并能正确进行计算。

2.使学生在认识和理解含有小括号的三步混合运算顺序的过程中,进一步积累数学学习的经验,并能用所学知识解决一些实际问题,发展数学思考。

3.使学生在运用所学计算知识解决实际问题的过程中,进一步增强规则意识,感受数学的应用价值,养成善于思考、乐于探究、勇于实践的良好品质。

三、教学过程

(一)设问,质疑法则

师出示式题:90010+204,让学生独立计算后再汇报。

师:计算时为什么不先算加?

生:在这道算式中,我们要按照先乘除,后加减的法则进行计算。

师:遵守法则无可厚非,可是法则就一定合理吗?比如在这里,如果按照法则计算,加法就永远不可以先算了!

生:加小括号就可以先算加。

师:看来法则的成立也是需要一定的条件的。算式中有了小括号,该怎样计算呢?

生:要先做小括号里面的运算,再做小括号外面的运算。

师:小括号在这里起到什么作用?

生:改变了运算顺序。

(二)探究,掌握法则

1.初步练习,掌握方法

师:怎样加小括号才能先算加?(师生讨论,形成算式:900(10+20)4)。

师:先算什么?再算什么?你能试着算一算吗?

学生试练,汇报交流。

师:是不是小括号随便加在哪儿,都可以改变运算顺序?

生:不是的,比如小括号加在90010上,运算顺序就没有改变。

师:这时的小括号常常被我们称为无效括号。那么小括号加在哪里,才能改变运算顺序?

生讨论交流,汇报,形成两道算式:(90010+20)4,900(10+204)。

师:这两道算式括号里都有两步运算,该怎样计算呢?

生:括号里也要按照先乘除、后加减的运算顺序进行计算。

师:能试着做一做吗?

生独立练习后反馈,师及时评价矫正。

2.对比辨析,加深理解

师:观察我们做过的这三道算式,其中的数、运算符号以及它们的排列顺序都一样,而且都只加了一个小括号,为什么计算的结果都不一样呢?

生:小括号的位置不同,运算的顺序也就不同,结果也就可能不一样。

师:那我们在做计算时,应当注意些什么?

生1:计算的时候不仅要看清数和运算符号,还要看清小括号的位置。

生2:先确定运算/顷序,再进行计算。计算时还要细心,不要算错了。

师:你们觉得在做混合运算时,什么是关键?

生:理清运算顺序是关键。

(三)变式,熟练法则

师:现在我们就来抓住关键练习,敢不敢接受挑战?

出示题1.根据算式选择合适的运算顺序。

(1)(60010+120)5

a.除乘加

b.除加乘

c.加除乘

(2)136+253010

a.乘除加

b.除乘加

c.乘加除

师:友情提醒,先思考,再慎重选择。

出示题2:根据算式写出合适的运算顺序。

(1)(75+49)(75-44)

(2)658-(174+89)

师:运算顺序掌握了,计算就成功了一半。下面的式题,你能正确合理地计算吗?

出示题3:26+(1460-30) 26+14(60-30) (26+14)(60-30)

出示题4:你能根据提示选择正确的算式吗?

a.(300-120+25)4

b.300-(120+25)4

c.300-(120+254)

师依次出示如下的(1)、(2)、(3)题,让学生选择合适的算式。

(1)按照先乘,再加,最后减的运算顺序运算的算式是( )。

(2)根据框图中的提示选择合适的算式是( )。

(3)求300减120,再加上25,和是多少的算式是( )。

(学生在做到第(3)题时,由于思维定式,大多数人都选择了a。)

师故意问几个没选a的同学:就剩(3)了,你们为什么不选?

生1:a式最后求的是积,不是和。

其他学生大呼:上当了!这题没有合适的算式可选!

师:同学们,学习可来不得半点马虎啊!

(四)冲突,再思法则

出示:学校举行运动会,三年级有54人参赛,四年级参赛的比三年级多7人,三、四年级共有多少人?(直接列出综合算式,不解答)

生练后呈现几种算式:①54+7+54 ②542+7 ③54+(54+7)

继续出示:五年级的参赛人数是三、四年级参赛人数的2倍,五年级有多少人参赛?

师:五年级的参赛人数与什么条件有关?

生:三、四年级参赛的总人数。

师:我们刚才已经列出了求三、四年级总人数的算式,你能在这个算式上改一改,把它变成求五年级参赛人数的算式吗?

生练习并汇报,在修改③式时教师故意将算式变成(54+(54+7))2

生1:这样不行,都有两个小括号了!

生2:里面有括号,外面又有括号,看不清,容易出错!

师:那该怎么办呢?

生1:可以加中括号。

生2:还有大括号。

师:看来光有小括号还不能解决所有的运算问题,那么其他的括号是什么样的,又有什么作用呢?有了这些括号又该怎样计算呢?我们今后还会再讨论。

(五)反思,超越法则

师:今天这节课,我们研究了带小括号的三步混合运算,你有什么收获吗?

生交流。

师:同学们学得很轻松,收获也不少。不过小括号的产生和使用过程可不那么轻松,它经历了一个漫长的过程。(出示书后关于小括号使用和变迁的数学文化史知识。)

师:同学们,小括号的使用在运算史上可谓是一个突破,因为它改变了先乘除后加减的运算顺序,使运算法则更加完善和人性化。但是,如果没有像上课伊始时我们对运算顺序的质疑,小括号还有可能出现吗?敢于质疑、勇于思考才能让我们的知识不断完善,能力不断提升!

[反思]

含小括号的三步混合运算知识难度不大,加之学生已有经验丰富,完全能够实现自我迁移和类推。然而,数学的学习不仅仅是知识和技能的掌握,数学情趣的激发,数学思维的培养,数学文化的熏陶都应融入知识的教学中去。带着思考,我对这节课进行了全新的设计,确立了以法则探寻为主线的教学思路,使原本平淡的一节课变得丰满,富有情趣和哲理。

一、用质疑来引入,激发学生对法则探寻的激情

现代社会中的人要生存,必须具有规则意识,然而一味地循规蹈矩,又会被规则约束,缺少创新精神,这就需要我们辩证地看待规则,理性地认识规则。先乘除、后加减是没有括号的四则混合运算的运算顺序,有合理性,也有局限,正是小括号的使用突破了这种局限,使法则更加完善。在这里,老师巧妙设疑:遵守法则无可厚非,可是法则就一定合理吗?比如在这里,如果按照法则计算,加法就永远不可以先算了!疑问激发了学生对法则的反思,引发了进一步探寻法则的欲望。学生在寻求问题解决的同时,不但加深了对小括号作用的理解,也对如何对待规则这样一个较为抽象的话题有了自己的感悟。在引导学生学习小括号里有两步运算的混合运算的计算方法时,教者也没有直接出示式题,而是再次设疑:是不是小括号随便加在哪儿,都可以改变运算顺序?小括号加在哪里,才能改变运算顺序?,让学生自己先尝试给算式加上小括号,然后再研究加上小括号后的算式的运算顺序,进行计算。在设疑释疑再疑再释疑的过程中,学生探究欲望被充分调动,新知的学习也更加主动有效。

二、用对比来深化,培养学生的数学思考

数学思考是数学学习的核心,没有思考,学习就变成了简单的模仿和练习。为了让学生进一步体会小括号的作用,理解运算顺序在计算中的重要性,我设计了一个对比环节,让学生观察、思考、领悟。即这三道算式中的数、运算符号以及它们的排列顺序都一样,而且都只加了一个括号,怎么计算的结果都不一样呢?学生在对比辨析的过程中,清晰地认识到要想正确、合理地计算这些混合运算题,首先得看清题意,理清运算顺序,然后再去计算的重要性。抓住核心对比,使得思考更加深入,思维也更加有序。

三、用错误来诱导,培养学生坚持真理的科学态度

毋庸置疑,学生的科学态度需要培养,然而如何培养才会达到润物细无声的效果,这是我们要思考的问题。在本节课中,我采用了有意犯错,故意诱错的策略,培养学生敢于挑战权威、善于质疑、勇于坚持真理的科学精神,取得了很好的教学效果。回想起学生认真地叫道:上当了!这题没有合适的算式可选!大声地喊道:这样不行,都有两个小括号了厂我的心情就万分激动,我感受到了他们对待科学的态度,感受到了他们追求真理的决心。

四、用文化来引导,激发学生敢于创新的精神

文化是一种引领,文化是一种传承,文化更是一种对真理孜孜不倦的追求。让学生了解文化,感受历史,从而产生崇敬、立志追求,树立信心、立志创新,不正是我们教育所要达到的最高境界的目标吗?所以,我设计了一个让学生了解是谁最先使用小括号的环节,让学生们通过对数学文化史的了解,知道小括号的由来和发展,感受数学知识的发展变化和每一步坚实的前行过程。同时我还用一句话:如果没有像上课伊始时我们对运算顺序的质疑,小括号还有可能出现吗?以此来激发学生的质疑精神,培养学生的创新意识。

六年级下册的小学数学教案人教版(篇9)

教学目标:

1.经历用7、8的乘法口诀求商的过程,熟练掌握用乘法口诀求商的基本方法;

2.根据具体情境,会正确用除法运算解决简单的实际问题;

3.在自主探索,合作交流过程中,进一步发展解决问题的能力。

教学重点:

熟练运用7、8的乘法口诀求商。

教学难点:

运用已有知识与经验自主探究用7、8的乘法口诀求商的一般方法。

教学教法:

学生已掌握了用2~6的乘法口诀求商的一般方法,用乘法口诀求商的思路和方法是一致的,所以针对这一情况,教学本课时,我采用“巩固旧知、导入新课——情境创设、激发兴趣——自主发现、方法探究——趣味游戏、强化练习”的教学方法,在师生交流互动中完成教学任务。

教学过程:

一、复习旧知,导入新课

1.谈话导入

我看下哈,咱们同学今天的精神气十足啊,怎么丁老师给你们上课很高兴啊?生兴奋答道:是!听你们这么说,我的心里比吃了蜂蜜还要甜!我听说人在心情好的时候记忆力是最好的,我们要不要借这个高兴劲发挥下我们的聪明呢?

2.背诵九九乘法口诀

集体背诵乘法口诀,看谁背的好!完后我会说:我发现同学们背诵的都非常棒,只有个别同学还不是很熟练,下去一定要熟背乘法口诀,倒背如流。为什么一定要背熟呢?因为它不仅可以帮我们解决用乘法计算的问题,还能帮我们解决用除法计算的问题。

3.导入新课。

前面我们已经学习了“用2~6的乘法口诀求商”,今天我们就继续接着学习“用7、8的乘法口诀求商”。

复习计算并说一说,你是怎样求商的?

24÷6= 想:( )六二十四

二、引导发现,探索新知

1.出示教材第37页主题图。

谈话:快要过六一儿童节了,我们大家预想一下怎么装扮教室,在装扮的过程当中也会有许多的数学问题。现在仔细观察“快乐的节日”这幅图,看看你能发现了什么?说一说图上的小朋友都在做什么?(引导学生观察情境图,收集数学信息。)

交流反馈

第一组做了一些红旗,要挂在教室里。

第二组做了49颗星,分给7个小组。

第三组带来了27个心形气球,每9个摆一行。

谈话:根据这些信息,你能提出哪些问题?(让学生自由发言,教师可做适当提示或引导。)

(1)第二组做了49颗星,分给7个小组,平均每组有几颗?

(2)第三组带来了27个心形气球,每9个摆一行,可以摆几行?

2.出示例1。

课件出示小旗,先出示一行,让学生看清每行有7面小旗,知道一行是一个7,接着一行一行的出示,共出示8行,也就是8个7,问共有多少面小旗?也就是求8个 7是多少?这个可以用乘法解决7×8=56(面)。然后同桌讨论:看图编应用题,引导学生说出 “有56面小旗,挂成8行,平均每行挂几面?”

(1)谈话:求“平均每行挂几面?”用什么方法计算?你是怎样想的?

教师展示课件例1图。

(2)引导学生解决问题并列出算式。

师:把一个整体平均分成几份,求每份是多少?像这种求平均分的问题,我们可以用除法计算,列式是56÷8。

(3)引导学生得出算式的商。问:你是怎么计算的?并板书(想7×8=56,口诀七八五十六,所以56÷8=7。)

(4)学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程根大家说一说,师板书。

56÷7=8 口诀:七八五十六。

(5)刚才我们计算56÷7和56÷8时都是用的哪句口诀?(七八五十六)

发现:除数是几,就想关于几的乘法口诀。

3.小结:算除法想乘法,除数是几就想关于几的乘法口诀,一句口诀可以计算两道除法算式。

三、趣味练习,巩固新知

装扮教室的问题我们已经解决了,那么下面这些练习题对我们来说就应该不是问题了。这部分设计了4个练习题

1.小小接力赛

课件出示课本第38页做一做第1题。

2.填方框

课件出示课本第38页做一做第2题。

引导学生认真读题感受方程思想。填空并说说思路,可以有不同的方法,只要合理,教师均要给予肯定和鼓励。

3.吹泡泡游戏

课件出示课本第38页做一做第3题。

4.分一分

课件出示课本第40页练习八第2题。

(三道题都是帮助学生巩固用口诀求商的方法,同时第一个练习还让学生通过观察分析,形成了一句口诀可以计算一道乘法算式和两道除法算式的认知结构。最后一题是使学生感受到数学知识来源于生活,又服务于生活,进一一步体会数学与生活的联系,从而培养学生用数学知识解决生活中的一些实际问题。)

四、总结归纳,交流体会

师:这节课你有什么收获?

学生自由发言。

教师小结:本节课大家的表现很不错,在解决装扮教室的时候学会了知识,走出教室又能用学到的知识解决生活中遇到的一些问题了。希望大家在以后多观察,多思考,其实许多的数学知识就在我们身边。

板书设计:

用7、8的乘法口诀求商

56÷8=7(面) 56÷7=8(面)

口诀:七八五十六 口诀:七八五十六

答:平均每行挂7面。 答:平均每行挂8面。

最新人教版六年级下册数学教案11篇


当老师在教授新课程时,通常需要准备教案和课件,这就需要我们的老师自己花时间来完成。教案的编写必须围绕教学目标和学生需求展开。本文主要讨论与“人教版六年级下册数学教案”有关的话题,我们将提供详细的信息,请拭目以待!

人教版六年级下册数学教案(篇1)

【教学目标】

1.在具体情境中进一步理解“增加百分之几”或“减少百分之几”的意义,能计算出实际问题中“比一个数增加百分之几的数”或“比一个数减少百分之几的数”,提高运用数学解决实际问题的能力。

2.能对现实生活中的有关数学信息作出合理的解释,并尝试解决生活中的一些简单的百分数问题;能试图探索出解答一般百分数应用题的方法,初步学会与他人合作。

3.体验百分数与日常生活的密切联系,认识到许多实际中的问题可以借助数学方法来解决。提高学生学习数学的兴趣,发展学生质疑的能力,感悟数学知识的魅力。

【教学重点】

理解“增加百分之几”和“减少百分之几”的意义。

【教学难点】

掌握百分数应用题的特征及解答方法。

【教学过程】

一、导入

师:同学们,随着科学技术的发展,社会生产力不断进步,我国从1997年至今。铁路已经进行了多次大规模的提速,高速列车已经步入了人们的生活。今天我们一起来研究与列车提速有关的问题。

【设计意图:从时事中提取数学信息,引导学生读活书、用活书,培养关注时事的兴趣。】

二、过程

师:说说从图中你了解到哪些信息?还想知道什么问题?(课件出示:教材第90页情境图)

生:从图中知道,原来的列车每时行驶180千米,现在高速列车的速度比原来的列车提高了50%。我想知道,现在的高速列车每时行驶多少千米?

师:“现在的高速列车每时行驶多少千米”,你是如何思考这个问题的?

生1:现在高速列车的速度比原来的列车快多了。

生2:我们首先要明白“现在高速列车的速度比原来的列车提高了50%”这句话的意思。

师:你是怎样理解这句话的?

生:我们可以画图表示现在的速度和原来的速度之间的关系,这样能帮助我们理解题意。

师:好,那就自己画图,试试看,能明白这句话的意思吗?

学生尝试画图,教师巡视了解情况,个别指导有困难的学生。

师:谁来说说自己的理解?

生1:很容易从图中看出,“现在高速列车的速度比原来的列车提高了50%”,意思是指提高的部分相当于原来的50%,是把原来的速度看作单位“1”,这样我们就可以先计算速度提高了多少千米,也就是求一个数的百分之几是多少,用乘法计算;然后计算现在高速列车的速度。

生2:从图中我们能看出,提高的部分是原来的50%,也就是说现在高速列车的速度是原来列车速度的(1+50%),这样就把问题转化成了“求一个数的百分之几是多少”的问题,用乘法计算。

师:说的都对。请同学们自己列式解决问题吧!

学生尝试独立列式解答,教师巡视了解情况。

组织学生交流汇报,重点说说想法:

先求比原来每时多行驶了多少千米,180×50%+180=270(千米)。

先求现在的速度是原来的百分之几,180×(1+50%)=270(千米)。

对于解答正确的学生及时给予表扬和鼓励。

师:从下面的信息中,选择两个信息,然后提出一个问题,并试着解决。跟小组同学交流一下。(课件出示:教材第91页“试一试”中的4条信息)

学生自己选择信息提出问题并解答,然后交流各自的方法;教师巡视了解情况。

选取不同情况的学生代表汇报交流,只要有道理就要给予肯定。

师:经过练习之后,淘气发现无论解决的是什么问题,都可以用下面的图来表示烘干前后的关系,你同意淘气的看法吗?为什么?(课件出示:教材第91页线段图)

组织学生讨论交流,达成一致意见,明确:烘干前的质量多,烘干后的质量少。

【设计意图:在具体问题的解决过程中,通过寻找数量关系,使学生进一步体会画线段图是一种非常常见的、有效的方法。】

三、总结

让学生说说本节课的收获。

【设计意图:调动学生的积极性,提高课堂的学习效率。】

板书设计:

先求原来每时多行驶了多少千米

180×50%+180

先求现在的速度是原来的百分之几

180×(1+50%)

教学反思:

能够与实际生活联系在一起,使学生切身体会到数学在实际生活中的运用,更好的激发出学生对数学的学习兴趣。每个学生是不同的个体,他们的思维方法可能千差万别,他们对教材也会有不同的理解。学生的这种不同理解,其实就是一种很好的课程资源。在新知教学过程中,学生在理解题意的基础上,先独立思考,后尝试解答,再合作研讨。提倡、发现学生的多种思维和不同解法。在这个过程中,学生的想法得到了充分的肯定和鼓励,同时也拓宽了其他学生的思路。

人教版六年级下册数学教案(篇2)

圆锥的认识

教学内容:教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。

教学目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

2、

通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

3、

培养学生的自主探索意识,激发学生强烈的求知欲望。

教学重点:掌握圆锥的特征。

教学难点:正确理解圆锥的组成。

教学准备:学生利用教材附页制作圆锥。

教学过程:

一、复习

同学们,前面我们认识了圆柱,谁能说一说圆柱各部分的名称及其特征?

二、新课

出示圆锥实物图,并从实物图中抽象出立体图形。师:像这样的形状叫圆锥,你还见过哪些圆锥形的物体?

1、圆锥的认识

(1)让学生拿出准备好的着圆锥看一看,摸一摸,它是由哪几部分组成的?指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。圆锥有多少条高?为什么?(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出平板和底面之间的距离。读数时要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥

(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将直角三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

小结:谁能归纳一下圆锥有什么特征?

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

第六课时教学反思

借助圆柱特征的学习方法,学生很快就迁移类推到圆锥的认识上。大家从底面、侧面和高三个角度有序地进行了特征的探究。只是没想到今年调整了教学方法,要求学生课前用附页2制作圆锥后,今天居然在圆锥的侧面展开图处出现了以往未出现的现象,许多学生认为圆锥的侧面展开图是半圆。原来,附页2的扇形与半圆大小很接近,所以造成了负迁移。再教建议:如果教材附页中的图仍旧不变,那么下次再教时,我会请班级部分优秀的同学尝试自己画图制作与教材大小不同的圆锥。

教材对圆锥的高是这样定义的——从圆锥的顶点到底面圆心的距离是圆锥的高。袁文杰同学对这一概念提出质疑,“这句话去掉“圆心”表述更简洁。因为从圆锥的顶点到底面的距离,距离要求线段最短,所以一定是从顶点到底面圆心。”对于这段话,我给予了肯定,只是解释为了大家更明确高的起点和终点,所以才这样表述。不知道这样的评价是否正确?

拓展:

1、介绍了圆锥的母线,并且要求学生对母线和高进行了对比。

2、对于新增内容加大教学力度,提问:

将直角三角形硬纸板贴在木棒上有几种贴法?哪几种旋转后能成为圆锥?(小结:以任意一条直角边为轴,旋转后可成为圆锥形)。

旋转后形成的圆锥体与直角三角形有什么关系?

人教版六年级下册数学教案(篇3)

一、创设情境,提出问题

师:同学们,你们知道一个人去找工作时,他一般最关注什么?

生:工资。

生:工作环境和待遇。

师:找工作时工资的多少往往是人们最关心的,李叔叔看到一份超市招聘公告上写着:本超市工作人员月平均工资1000元,现招收员工若干。李叔叔一看条件不错,就应聘做了超市的一名工作人员。可第一个月他只拿到工资500元,第二个月也只有600元,问了一些同事大部分都是600元,少数超过600元。他找到了超市副经理说:你们欺骗了我,我已经问过其他工人没有一个工人的工资超过1000元,平均工资怎么可能是每月1000元呢?超市副经理拿出了超市工作人员的工资表:

某超市工作人员月工资如下表单位:元经理副经理员工A员工B员工C员工D员工E员工F员工G员工H员工I

月工资30002000900800700700600600600600500

问题1请大家仔细观察表中的数据,讨论回答下面的问题:

(1)副经理说月平均工资1000元是否欺骗了李叔叔?

(2)你有什么想法?

生:刚才我算了一下,这11个数的平均数是1000,所以月平均工资1000元没有欺骗。

师:对,我们学过平均数的知识,平均数是1000元是没有错。

那为什么李叔叔只能拿到600元。大家可以阐述一下自己的观点。

生:因为两位经理的工资很高,带动了员工的平均公资。

师:,看来这组数据中,由于出现了两个特别的数据,所以平均数1000不能真实反映大多数员工的工资水平,你认为应该用什么数反映这个超市的工资水平比较合理呢?请大家观察这些数据的特点,然后说说你的想法。

【设计意图:本环节痛过李叔叔在找工作时遇到的实际问题,使数学贴近生活,激发学生的兴趣,让学生在帮助李叔叔的过程中感受到在这里平均数和中位数不能真实反映员工的工资水平,初步感受众数产生的必要性。】

学生小组讨论:

生1:我们小组讨论后认为用600元是比较好的,因为这里600元的人是最多的,有4个人。

生2:我认为700元比较合理,因为它是这组数据的中位数。

师:大家分析的不错,很有自己的想法。平均数会受一些特别偏大或偏小的数据的影响。那么李叔叔最有可能挣到多少钱?

生:600元

师:600在这里出现次数最多,它代表的是多数人的工资水平,所以600就是这组数据的众数。

二、探究新知。

板书:众数。

【设计意图;本环节提出这样的问题,主要想通过工资表中出现次数最多的600理解众的含义,进而理解众数的意义。】

师:请大家试着说一说众数的意义;然后教师小结出示概念。齐读概念。

师:现在,我们已经知道了三个统计量,那么,面对具体的问题,我们应该选择哪个统计量来描述数据的集中趋势呢、下面请看这个问题。

五(2)班要选10名同学组队参加集体舞比赛。下面是15名候选队员的身高情况。(单位:米)

1.41,1.41,1.41,1.44,1.45,1.4,1.48,1.49

1.51,1.51,1.51,1.51,1.52,1.54,1.54

你认为参赛队员的身高是多少比较合适?

学生小组合作。根据学生汇报,教师小结。从审美角度以及队伍整齐观点来看应以众数1.51为标准选择队员身高会比较均匀。

【设计意图:本环节通过小组活动给学生提供参与数学活动的机会,使他们在思考,探究,讨论。交流中充分发表自己的意见,在实际问题中体会三个统计量的区别和他们各自的适用限度,让学生意识到生活中数学无处不在,感受和体会数学中美的因素】。

三、分析数据,尝试统计决策。

师:同学们,全世界都关注的奥运会就要在北京召开了,我国的体育健儿正在紧张的训练,准备迎战奥运会。国家队的教练想在两名优秀的射击运动员中选择一名去参加比赛:(出示两名运动员成绩)

甲:9.5109.49.59.79.59.49.39.49.3

乙:109108.39.89.5109.88.79.9

看到两名运动员的成绩,大家能否猜想一下,教练会选择谁去呢?

生1:我认为会选甲,甲的成绩很高。

生2:我想会选乙,乙打中10环的多。

生3:我想应该看看他们的平均分。

师:大家说的很好,大胆的说出了自己的想法;让我们用掌声来鼓励他们。那我们就先从平均数入手,大家动手做一做,看看他们的平均数是多少?(可以同桌合作)

生:老师,平均数一样,都是9.5。

师;平均数一样我们该怎么办呢?

生1:看众数。甲的众数是9.5。

生2:9.4也出现三次,9.4也是众数。那两个都是众数吗?

师:当然,众数可以不止一个。也可以没有,比如说我们班前五名同学的成绩就没有重复的,那自然就没有众数了。

生:乙的众数是10,所以乙获胜的机会大一些。

师:在平均数相同时,我们应该看众数。

【设计意图:通过一组练习,使学生能灵活选择适当的统计量表示一些数据的特点,并从数据的波动大小中,体现概率的可能性。让学生能根据统计量进行简单的预测或作出决策。使学生充分感受到数学与生活的联系,并从解决问题中体会到成功的喜悦,从而更加热爱数学。】

四、学生畅谈收获。

五:教师小结。

同学们,通过本节课的学习,我们认识了众数这一统计量,并且通过练习理解了平均数,中位数和众数这三个统计量的联系与区别,根据我们分析数据的不同需要,可以正确选择合适的统计量。

案例反思:

1、创设问题情境,教学开始,我提出的是一个生活中的真实问题。让学生在参与中引发他们的理性认识,通过学生的独立思考和交流,引起了学生对月工资水平的认知冲突,发现单靠平均数来描述数据特征有时是不合适的。让学生从具体问题中体会数学在生活中的重要性

2、在分析讨论中促进学生对概念的理解,众数的概念,我没有直接给出,而是通过学生观察、分析、讨论、在共享集体思维成果的基础上逐步建构的,这样做使学生逐步体会到这三个统计量都反映一组数据的集中趋势,但描述的角度并不相同,三者之间既有联系又有区别,同时也渗透出了他们的优越性与局限性。可以比较全面、正确地理解所学知识。教学中,让学生通过思考总结,如射击队员的选择,数据越多,频率越稳定。如能经过更多数据的收集和整理,根据方差的特点由数据的稳定性及波动大小再考虑一下其他因素,可能结果会不一样。对不完善的地方再加以补充,充分发挥学生在学习中的主体地位,同时,教师作为参与者,主动加入到学生的讨论中,对学生的认识起到帮助和促进的作用。

人教版六年级下册数学教案(篇4)

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

0.5:0.25和0.2:0.4

0.5 :0.2和5:2

1/2:1/3 和6 : 4

0.2:0.8和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:2.4:1.6 = 60:40

内项:1.6 6o

外项:2.4 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如:2.4 :1.6 = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是2.440=96

两个内项的积是1.660=96

外项的积等于内项的积。

(4) 举例说明,检验发现。

0.6 :0.5=1.2: 1

两个外项的积是 0.61 =0.6

两个内项的积是0.51.2=0.6

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:2.4/1.6 = 60/40

3.440=1.660

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

(2)0.8:1.2=4:6

( )( )=( )( )

(3)45=210

4:( )=( ):( )

5.做一做。

完成课本中的做一做。

6.课堂小结

(1) 说一说比例的基本性质。

(2) 你可以用什么方法来判断两个比能否组成比例(引导学生总结说出两种方法,重点让学生理解掌握比例的基本性质,到此,学生要学会用两种方法判断两个比能否组成比例;1.比值是否相等;2.内项之积是否等于内项之积。)

三、巩固练习

完成课文练习六第4~6题。

补充习题

一题多变化,动脑解决它

(1)在比例里,两个内项的积是18,

其中一个外项是2,另一个外项是()。

(2)如果5a=3b,那么, = ,

(3)a︰8=9︰b,那么,ab=( )

教学反思:

比例的各部分名称通过学生自学,老师提问,完成的较好。让学生通过计算内项之积和外项之积发现比例的基本性质。然后大量的练习巩固新知。

人教版六年级下册数学教案(篇5)

教学内容:

练习三第10~16题、思考题、动手做。

教学目标:

1.使学生在具体的解决问题情境中,进一步体会底面积、侧面积、表面积和容积这些概念的联系和区别,积累解决问题的方法和经验。

2.提高学生应用已有知识解决实际问题的能力,发展空间观念和初步的推理能力。

3.使学生进一步体验立体图形与生活的关系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

教学重点:

运用圆柱体积公式解决实际问题。

教学难点:

根据实际情况运用圆柱体积公式解决实际问题。

教学过程:

一、复习回顾,理清思路。

1.回顾复习。

教师谈话:用一句话介绍前面几节课学习的关于圆柱的知识。

预设学生回答:圆柱的体积计算;圆柱的特征;圆柱表面积的计算方法和各种情况。

2.理清思路。

同桌说说计算圆柱体积的步骤,先算出底面积,再算出圆柱的体积;

同桌说说计算圆柱表面积的步骤,先算出底面积和侧面积,再算出圆柱的表面积;

3.揭示课题——圆柱表面积和体积的练习课。

二、基本练习,形成技能。

1.练习三第10题。

根据表中的已知分别计算每个圆柱的未知量。学生独立完成。

2.练习三第11题。

学生读题,理解题意。注意分清3个小问题分别求什么问题。

3.练习三第12题。

引导思考:第1个问题求水池里最多能蓄水多少吨,要从体积入手;第2个问题要弄清楚求的是几个面的面积之和。

4.练习三第13题。

学生读题,分析题意。之后一人板演,全班齐练。评讲时注意后进生的辅导。

5.练习三第14题。

⑴出示题目,理解题目意思。

⑵讨论:塑料薄膜的面积相当于什么?

大棚内的空间相当于什么?

⑶分别怎么算?

引导理解:蔬菜大棚中求需要多少塑料薄膜和空间有多大,分别求圆柱表面积和体积的一半。

6.练习三第15题。

分析:玲玲把一块长方体橡皮泥捏成一个圆柱体虽然形状变了,但什么没变?(体积)

7.练习三第16题。

提问:要求水面高多少分米,要先求什么?(水杯的高)

三、拓展延伸,开阔思维。

1.第19页思考题。

学有余力学生完成。

⑴把圆钢竖着拉出水面8厘米,水面下降4厘米,你能想到什么?

⑵全部浸入,水面上升9厘米,你又能想到什么?怎么算出这个圆钢的体积?

⑶这题还可以怎么想?

让学生明白:上升或下降的水的体积就是那一部分钢材的体积。

2.第19页动手做。

讲解测量方法——在容器里放适量的水,把土豆浸没在水中,测量并记录相关的数据,算出土豆的体积。并且提供一张表格,提示应该记录容器的底面积、放入土豆前的水面高度、放入土豆后的水面高度以及算出的土豆体积。然后是测量与计算,一边操作一边思考应注意什么。如,容器底面积不能直接量得,只能测量底面的半径、直径或周长。测量半径需要确定圆心,测量周长还要计算直径,一般测量直径,既容易量,也便于算。又如,测量底面直径、水面高度都要在容器里面进行,利用容器里面的数据,算出的才是水的体积、土豆的体积。

四、作业

基础训练

频道小编推荐: |

人教版六年级下册数学教案(篇6)

教学内容:

教材第11页的例2.第12页的例3和第12页的“练一练”,完成练习二第4~6题。

教学目标:

1.让学生经历操作、观察、比较和推理,理解圆柱侧面积和表面积的含义,探究并掌握圆柱侧面积和表面积的计算方法能正确运用公式计算圆柱的侧面积和表面积相关的一些简单实际问题。

2.让学生在学习活动中进一步积累空间与图形的学习经验,培养创新意识及合作精神,以及抽象、概括能力,进一步形成和发展学生的空间观念。

3.让学生进一步体会图形与实际生活的联系,感受立体图形学习的价值,提高数学学习的兴趣和学好数学的信心。

重点难点:

1.理解圆柱侧面积、表面积的意义,正确计算圆柱侧面积和表面积。

2.培养学生观察、操作、概括的能力和利用所学知识解决实际问题的能力。

教学资源:

师生各备一易拉罐,并把上下面用彩纸包好,剪刀、胶水、圆规、白纸一张、计算器。

教学过程:

一、实验导入,渗透思想

⒈(出示一张长方形纸)老师这儿有一张长方形纸,我想让它站起来,你有什么办法吗?

小结:原来在一定条件下平面可以“化直为曲”。

⒉把这个圆柱形的纸筒打开后是什么形状?

小结:同样地,在一定条件下曲面可以“化曲为直”。

⒊揭题:这节课将运用这个知识来研究圆柱的侧面积和表面积。(板:圆柱的侧面积和表面积)

二、引导探究,学习新知

(一)圆柱的侧面积的计算。

老师发现同学们特别爱喝饮料,今天我们共同带来了一瓶椰子汁,看到它,你能提出什么数学问题来?

师引导:我们就来先来解决这位同学提出的商标纸问题,其实就是求什么?(圆柱的侧面积)

1.引导探究圆柱侧面积的计算方法

①设疑:圆柱的侧面是个曲面,怎样计算商标纸的面积呢?

②全班交流:沿着接缝把商标纸剪开,再展平。

③小组合作探究

那就让我们一起来研究一下,听清要求:先独立剪开商标纸展开,再观察展开后的图形与原来的圆柱有什么关系?把你的发现在小组里交流一下。接头处忽略不计。

④汇报交流:哪个小组愿意上来汇报一下你们的发现?指名上台拿着学具汇报,生。(师再追问:通过刚才同学的汇报,我们知道了这个长方形的长和宽与圆柱有什么关系呀?学生回答,师适时板书)

⑤怎样计算圆柱的侧面积?再次追问:为什么?(补充板书)

⑥小结:你们真不错,巧妙地运用化曲为直,探讨发现了圆柱侧面积的计算方法。

2.计算圆柱的侧面积

①现在请你计算一下这罐椰子汁所用商标纸的面积(出示椰奶罐的底面周长约是 厘米,高约是 厘米)你是怎样算的?

②解决例2

但在实际生活中有时不直接告诉你底面周长,例如怎么算?学生独立做在书上,指名一生板演,集体反馈。

③思考:要求一个圆柱的侧面积,通常需要知道哪些条件?

④小结:如果没有直接告诉底面周长,应用已知直径(或半径)求周长的方法,然后求侧面积。

(二)探索圆柱表面积的计算方法

1.理解圆柱表面积的含义

①动手贴出圆柱表面积:拿着实物,光这样一个侧面能装饮料吗?还需加上(两个底面)我们把这个圆柱饮料罐各部分一一展开粘在纸上(学生动手操作,师巡视发现两种常见粘法)交流展示,最好这样放。

看着圆柱展开图,让它在头脑中动起来(长方形的长等于…宽等于…)这样我们可以更清楚地想象出长方形与圆柱的关系。

指着图,由这些些部分组成了圆柱的表面积,什么是圆柱的表面积?(板书)

②动手画出圆柱表面展开图:下面我们要画圆柱的展开图,画前先算一算,学生算好后回答,师板书。

要求画在书上的方格纸上,友情提醒:一要想要画出圆柱的哪几个面?二要注意每个方格纸边长厘米,根据算的数据合理布局。(实物投影展示学生作品,作评价)

2.怎样计算圆柱的表面积?

①例3中的圆柱表面积会算吗?

独立做在书上,交流反馈:每步求出的是什么?指出:解答时为清楚最好分步算出各部分面积。

②出示易拉罐的数据,图例:半径:2.5厘米,高:12厘米,求铁皮用料。

③要求一个圆柱的表面积,通常需要知道哪些条件?

三、应用练习,巩固深化

过渡:在实际生活中,有很多圆柱体实物,你会根据实际算出它们要求的面积吗?

1.教材第12页“练一练”(理解题意要求的是圆柱的哪部分面积后独立做)

2.练习二第6题。(通过填表帮助学生进一步区分圆柱的侧面积、底面积、表面积三个不同的概念和不同的算法;整理侧面积、底面积与表面积之间的联系,使计算圆柱表面积的思路更加清楚)

四、全课总结,认识升华

通过今天这节课的学习,你有哪些收获?还有什么问题吗?

五、课堂作业

练习二第4.5题。

频道小编推荐: |

人教版六年级下册数学教案(篇7)

圆锥的体积

教学内容:第25~26页,例2、例3及练习四的第3~8题。

教学目的:

1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。

2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。

3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。

教学重点:掌握圆锥体积的计算公式。

教学难点:正确探索出圆锥体积和圆柱体积之间的关系。

教学准备:圆锥与等底等高的圆柱,圆锥与不等底等高的圆柱。

教学过程:

一、复习

1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点)

2、圆柱体积的计算公式是什么?

指名学生回答,并板书公式:“圆柱的体积=底面积×高”。

二、新课

1、教学圆锥体积的计算公式。

(1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的.

(2)能不能也通过已学过的图形来求呢?圆锥的体积可能和什么图形的体积有关?圆锥的体积该怎样求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)

(3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?”

(4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?

(教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。)

(5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的)还可以怎么说?

板书:圆锥的体积=1/3×圆柱的体积=1/3×底面积×高,字母公式:V=1/3Sh

拿不等底等高的圆柱与圆锥进行实验。为什么倒3次不能刚好倒,和刚才不一样呢?

强调:“等底等高”。

问:Sh表示什么?为什么要乘1/3?

练习:一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

一个圆锥的体积是15立方厘米,与它等底等高的圆柱的体积是多少?

2、教学练习四第3题

(1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算?

(2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。

说明:不要漏乘1/3,计算时能约分的要先约分。

3、巩固练习:完成练习四第4题。

4、教学例3.

(1)出示例3

已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。

(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)

(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)

(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上.做完后集体订正。(注意学生最后得数的取舍方法是否正确)

四、巩固练习

1、做练习四的第7题。

学生先独立判断这三句话是否正确,然后全般核对评讲。

2、做练习四的第8题。

(1)引导学生学生思考回答以下问题:

① 这道题已知什么?求什么?

② 求圆锥的体积必须知道什么?

③ 求出这堆煤的体积后,应该怎样计算这堆煤的重量?

(2)让学生做在练习本上,教师巡视,做完后集体订正。

3、做练习四的第6题。

(1)指名学生先后回答下面问题:

①圆柱的侧面积等于多少?

②圆柱的表面积的含义是什么?怎样计算?

③圆柱体积的计算公式是什么?

④圆锥的体积公式是什么?

(2)学生把计算结果填写在教科书第28页的表格中,做完后集体订正。

五、总结

这节课学习了哪些内容?你是如何准确地记住圆锥的体积公式的?

第七课时教学反思

课件演示

俗话说“眼见为实”,所以相对于课件演示而言,教师在全班演示会更直观,结论也更具信服性。

俗话又说“纸上得来终觉浅,绝知此事要躬行”,所以相对于看教师演示与自己亲自动手实验,亲身经历探究印象会更深刻。

课堂如果以4——6人小组为单位进行实验,全班至少得有9套以上教具。可我校现有教具数量不够。如果要求学生课前自制教具,他们暂时无法制作出与圆柱等底等高的圆锥。所以只好改为教师演示,学生观察。

仅用一次实验就得出结论是不严谨的,所以课堂上必须让学生历经多次不同实验后才能得到正确结论。根据学校现有教具,今天我准备了两套不同大小的等底等高圆柱、圆锥作为器材。在实验中,我不仅让学生清晰地看到将圆锥内的水倒3次可以注满与它等底等高的圆柱,同时,还让他们看到圆柱内的水再反倒回等底等高的圆锥时要倒3次。不仅自己示范演示,也让学生参与演示实验。最后,我还用不等底等高的圆柱与圆锥做实验,强调实验结果只有在“等底等高”的条件下才能成立。因为实验环节落实较好,全班作业正确率高。

人教版六年级下册数学教案(篇8)

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第56-58页例4及做一做。

【教学目标】

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

【教学重点】图形的放大与缩小。

【教学难点】按一定的比把图形放大或缩小。

【教学准备】多媒体

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50c:40=50c:4000c=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000c=50

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

人教版六年级下册数学教案(篇9)

第一课时

教学内容:P39~41 成正比例的量

教学要求:1、使学生理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2、培养学生概括能力和分析判断能力。

3、培养学生用发展变化的观点来分析问题的能力。

教学重点:成正比例的量的特征及其判断方法。

教学难点:理解两个变量之间的比例关系,发现思考两种相关联的量的变化规律.

教学过程:

一、四顾旧知,复习铺垫

1、已知路程和时间,求速度

2、已知总价和数量,求单价

3、已知工作总量和工作时间,求工作效率

二、引导探索,学习新知

1、教学例1:

出示:一列火车1小时行驶90千米,2小时行驶180千米,

3小时行驶270千米,4小时行驶360千米,

5小时行驶450千米,6小时行驶540千米,

7小时行驶630千米,8小时行驶720千米……

(1)出示下表,填表

一列火车行驶的时间和路程

时间

路程

填表,思考:在填表中你发现了什么?

时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

根据计算,你发现了什么?

相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(板书)

(2)教师小结:

同学们通过填表,交流,知道时间和路程是.两种相关联的量,路程随着时间的变化而变化.时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2、教学例2:

(1)花布的米数和总价表

数量 1 2 3 4 5 6 7 ……

总价 8.2 16.4 24.6 32.8 41.0 49.2 57.4 ……

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

3、抽象概括正比例的意义。

(1)比较例1、例2,思考并讨论:这两个例题有什么共同点?

(2)两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

(3)看书P39,进一步理解正比例的意义。

(4)如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

(5)根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

4、看书P40例2。

(1)题中有几种量?哪两种量是相关联的量?

(2)体积和高度的比的比值是多少?这个比值是什么?是不是一定?

(3)它们的数量关系式是什么?

(4)从图中你发现了什么?

(5)不计算,根据图像判断,如果杯中水的高度是7厘米,那么水的体积是多少?225立方厘米的水有多高?

三、课堂小结:

什么是成正比例的量?它必须具备什么条件?怎样判断成正比例的量?

四、课堂练习:

1、P41做一做

2、P43~44练习七第1~5题。

第二课时

教学内容:P42 成反比例的量

教学目的:1、理解反比例的意义,能根据反比例的意义,正确的判断两种量是否成反比例。

2、通过引导学生讨论探究,分析合作,使学生进一步认识事物之间的联系和发展变化的规律。

3、初步渗透函数思想。

教学重点:引导学生总结出成反比例的量,是相关的两种量中相对应的两个数积一定,进而抽象概括出成反比例的关系式.

教学难点:利用反比例的意义,正确判断两个量是否成反比例.

教学过程:

一、复习铺垫

1、下面两种量是不是成正比例?为什么?

购买练习本的价钱0.80元,1本;1.60元,2本;3.20元,4本;4.80元6本.

2、成正比例的量有什么特征?

二、探究新知

1、导入新课:这节课我们继续学习常见的数量关系中的另一种特征——成反比例的量。

2、教学P42例3。

(1)引导学生观察上表内数据,然后回答下面问题:

A、表中有哪两种量?这两种量相关联吗?为什么?

B、水的高度是否随着底面积的变化而变化?怎样变化的?

C、表中两个相对应的数的比值各是多少?一定吗?两个相对应的数的积各是多少?你能从中发现什么规律吗?

D、这个积表示什么?写出表示它们之间的数量关系式

(2)从中你发现了什么?这与复习题相比有什么不同?

A、学生讨论交流。

B、引导学生回答:

(3)教师引导学生明确:因为水的体积一定,所以水的高度随着底面积的变化面变化。底面积增加,高度反而降低,底面积减少,高度反而升高,而且高度和底面积的乘积一定,我们就说高度和底面积成反比例关系,高度和底面积叫做成反比例的量。

(4)如果用字母x和y表示两种相关的量,用k表示它们的积一定,反比例可以用一个什么样的式子表示?板书:x×y=k(一定)

三、巩固练习

1、想一想:成反比例的量应具备什么条件?

2、判断下面每题中的两个量是不是成反比例,并说明理由。

(1)路程一定,速度和时间。

(2)小明从家到学校,每分走的速度和所需时间。

(3)平行四边形面积一定,底和高。

(4)小林做10道数学题,已做的题和没有做的题。

(5)小明拿一些钱买铅笔,单价和购买的数量。

(6)你能举一个反比例的例子吗?

四、全课小节

这节课我们学习了成反比例的量,知道了什么样的两个量是成反比例的两个量,也学会了怎样判断两种量是不是成反比例。

五、课堂练习

P45~46练习七第6~11题。 第三课时

教学内容:正比例和反比例的比较

教学目标:1、进一步理解正比例和反比例的意义,弄清它们的联系和区别。掌握它们的变化规律。

2、使学生能正确判断正、反比例。

3、发展学生分析、比较、抽象、概括能力,激发学生的学习兴趣。

教学难点:正反比例的联系和区别 。

教学重点:能判断正、反比例。

教学过程:

一、复习:

判断:下面每组中的两个量成什么关系?

1、单价一定,数量和总价。

2、路程一定,速度和时间。

3、正方形的边长和它的面积。

4、时间一定,工效和工作总量。

二、新知:

1、出示课题:

2、教学补充例题

出示表1

路程(千米) 5 10 25 50 100

时间(时) 1 2 5 10 20

表2

速度(千米/时) 100 50 20 10 5

时间(时) 1 2 5 10 20

分组讨论、交流:说一说怎样想的,同时填空。引导学生讨论回答。

总结路程、速度、时间三个量中每两个量之间的比例关系。

速度×时间=路程 =速度 =时间

判断:

(1)速度一定,路程和时间成什么比例?

(2)路程一定,速度和时间成什么比例?

(3)时间一定,路程和速度成什么比例?

3、比较正比例、反比例的关系

正反比例的相同点:都有两种相关联的量,一种量随着另一种量变化。

不同点:正比例使变化相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)一定,反比例是变化相反,一种量扩大(或缩小),另一种量反而缩小(扩大)相对应的每两个量的积一定。

三、巩固练习

1、做一做

判断单价、数量和总价中的一种量一定,另外两种量成什么关系。为什么?

单价一定,数量和总价—

总价一定,数量和单价—

数量一定,总价和单价—

2.判断下面一些相关联的量成什么比例?为什么?

(1)除数一定, 和 成 比例。

被除数—定, 和 成 比例。

(2)前项一定, 和 成 比例。

(3)后项一定, 和 成 比例。

(4)长方形的长、宽和面积三总量,如果长是一定的,宽和面积成正例关系。这三种量再什么条件下还能组成比例关系,是哪种比例关系。

频道小编推荐: |

人教版六年级下册数学教案(篇10)

位置

教学目标:

1.在具体的情境中,探索确定位置的方法,能用数对

2.使学纸用数对

教学重点:能用数对

教学难点:能用数对

导入

我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?

学生各抒己见,讨论出用第几列第几行的方法来表述。

新授

教学例1

如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?

学生练习用这样的方法来表示其他同学的位置。(注意强调先说列后说行)

教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)

小结例1:

确定一个同学的位置,用了几个数据?(2个)

我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。

练习:

教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。

生活中还有哪里时候需要确定位置,说说它们确定位置的方法。

教学例2

我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。

依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)

同桌讨论说出其他场馆所在的位置,并指名回答。

学生根据书上所给的数据,在图上标出飞禽馆猩猩馆狮虎山的位置。(投影讲评)

练习

练习一第4题

学生独立找出图中的字母所在的位置,指名回答。

学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。

练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置

练习一第6题

独立写出图上各顶点的位置。

顶点A向右平移5个单位,位置在哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?

照点A的方法平移点B和点C,得出平移后完整的三角形。

观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)

总结

我们今天学了哪些内容?你觉得自己掌握的情况如何?

作业

练习一第1、2、5、7、8题。

教学反思

人教版六年级下册数学教案(篇11)

认识负数

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

教学重点:初步认识正数和负数以及读法和写法。

教学难点:理解0既不是正数,也不是负数。

教学具准备:多媒体课件、温度计、练习纸、卡片等。

教学过程:

一、游戏导入(感受生活中的相反现象)

1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

2、下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。

说明什么是相反意义的量(意义正好相反)

3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

二、教学例1

1、认识温度计,理解用正负数来表示零上和零下的温度。

课件出示地图:点击南京出示温度计和南京的图片。首先来看一下南京的气温。

这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。

(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。

①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

负号能不能省略不写?为什么?

②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)

3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。

2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?

3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。

你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。

吐鲁番盆地的海拔可以记作:-155米。(板书)

(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

四、小组讨论,归纳正数和负数。

1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

2、学生交流、讨论。

3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

4、小结:什么是正数、负数?

师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

五、联系生活,巩固练习

1.练习一第2、3题

2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。

3.讨论生活中的正数和负数

(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

六、课堂小结

这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

人教版六年级下册数学教案精选8篇


《人教版六年级下册数学教案》是由幼儿教师教育网编辑为您搜集整理的内容。为了促进学生掌握上课知识点,老师需要提前准备教案,因此在写的时候就不要草草了事了。编写好教案能够帮助教师更好地实现教育教学目标。欢迎收藏本网站,继续关注我们的更新!

人教版六年级下册数学教案【篇1】

【学习目标】

1、 认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。

2、养成良好的生活、学习习惯,感受统计的意义和作用。

3、培养逻辑推理和抽象概括的能力。

【学习重难点】

1、重点是看懂并能简单地分析扇形统计图所反映的情况。

2、难点是结合统计图正确进行数据分析,为决策服务。

【学习过程】

一、 导入

1、 调查同学们喜欢什么运动项目?

利用以前学过的知识能不能很

好地表示出这些情况?

2、 收集和整理数据,统计全班最

喜欢的各项运动项目

的人数,制成条形统计图。

二、探索新知

1、复习条形统计图

(1)阅读课本P106,说说从条形统计图中你能得到哪些信息?

(2)想一想:条形统计图有什么特点?还有哪些信息不容易表示出来?

☆友情小提示:条形统计图可以清楚地呈现各种数量的多少。

但是条形统计图不容易看出各部分量与总量的关系

2、自学课本P107,认识扇形统计图。

(1)用整个圆表示什么?用圆内各个扇形的大小表示什么?

(2)从扇形统计图中你可以了解到什么信息?

(3)观察扇形统计图,你还能提什么问题?并认真解答。

3、思考:扇形统计图有什么特点?

☆友情小提示:

扇形统计图可以清楚地呈现各部分数量同总量之间的关系,即百分比或分数比。

4、阅读p109“你知道吗?”,理解内容。

5、想一想我们还学过哪种统计图?举例说明它有什么特点?

☆友情小提示:折线统计图表示数量变化情况。

三、知识应用:独立完成P109第4题,组长检查核对,提出质疑。

四、层级训练:1、巩固训练:①完成P107“做一做” 。

②完成P108练习二十五第1、2题。

2、拓展提高:P109第3题.

五、总结梳理: 回顾本节课的学习,说一说你有哪些收获?

学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。)

自我展示台:(写出你的发现或见解)

人教版六年级下册数学教案【篇2】

教学目标:

1.使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,

2.使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

3.培养学生的判断分析推理能力。

教学重点:

使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

教学难点:

学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

教学过程:

一、旧知铺垫

1.下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

2.根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

二、创设情境引入内容

1.出示例5

“画面上张大妈与李奶奶的对话让我们知道了哪些数据?你能提出什么问题?”

学生回答后引出求水费的实际问题。

你们学过解答这样的问题吗?能不能解答?让学生自己解答,交流解答的方法。

引入:“这样的问题可以用应用比例的知识来解答,我们今天就来学习用比例的知识进行解答。”

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

明确

因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

学生讨论交流

演示解题过程:设未知数,根据正比例的意义列出方程,接着解比例求出未知数。让学生检验所求的未知数x是否合乎题意。检验的方法是把求出的数代入原等式(即方程),看等式是否成立。把求出的16代入等式,左式==1.6,右式==1.6,左式=右式,也就是它们的比值相等,与题意相符,所以所求的解是正确的。

问题:“王大爷家上个月的水费是19.2元,他们家上个月用多少吨水?”

要求学生应用比例的知识解答,然后交流。通过订正、交流,使学生明确条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了。

2.出示例题6的场景。

同样先让学生用已学过的方法解答,然后学习用比例的知识解答。

师:“想一想,如果改变题目的条件和问题该怎样解答?”

出示以下问题让学生思考和讨论

①问题中有哪两种量?

②它们成什么比例关系?你是根据什么判断的?

③根据这样的比例关系,你能列出等式吗?

注意启发学生根据反比例的意义来列等式,使学生进一步掌握两种量成反比例的特点和解决含反比例关系的问题的方法。

让学生演示解题过程,集体修正。

3.完成“做一做”,

直接让学生用比例的知识解答

问题:对照两题说一说两道题数量关系有什么不同,是怎样列式解答的。

总结应用比例知识解答问题的步骤

(1)分析题意,找到两种相关联的量,判断它们是否成比例,成什么比例。

(2)依据正比例或反比例意义列出方程。

(3)解方程(求解后检验),写答。

频道小编推荐: |

人教版六年级下册数学教案【篇3】

圆锥的认识

教学内容:教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。

教学目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

2、

通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

3、

培养学生的自主探索意识,激发学生强烈的求知欲望。

教学重点:掌握圆锥的特征。

教学难点:正确理解圆锥的组成。

教学准备:学生利用教材附页制作圆锥。

教学过程:

一、复习

同学们,前面我们认识了圆柱,谁能说一说圆柱各部分的名称及其特征?

二、新课

出示圆锥实物图,并从实物图中抽象出立体图形。师:像这样的形状叫圆锥,你还见过哪些圆锥形的物体?

1、圆锥的认识

(1)让学生拿出准备好的着圆锥看一看,摸一摸,它是由哪几部分组成的?指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O)

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。圆锥有多少条高?为什么?(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)

2、小结

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;

(2)用一块平板水平地放在圆锥的顶点上面;

(3)竖直地量出平板和底面之间的距离。读数时要读平板下沿与直尺交会处的数值。

4、教学圆锥侧面的展开图

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

5、虚拟的圆锥

(1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将直角三角形制片绕着一条直角边旋转,会形成什么形状?

(2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。

小结:谁能归纳一下圆锥有什么特征?

三、课堂练习

1、做第24页“做一做”的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

四、总结

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

第六课时教学反思

借助圆柱特征的学习方法,学生很快就迁移类推到圆锥的认识上。大家从底面、侧面和高三个角度有序地进行了特征的探究。只是没想到今年调整了教学方法,要求学生课前用附页2制作圆锥后,今天居然在圆锥的侧面展开图处出现了以往未出现的现象,许多学生认为圆锥的侧面展开图是半圆。原来,附页2的扇形与半圆大小很接近,所以造成了负迁移。再教建议:如果教材附页中的图仍旧不变,那么下次再教时,我会请班级部分优秀的同学尝试自己画图制作与教材大小不同的圆锥。

教材对圆锥的高是这样定义的——从圆锥的顶点到底面圆心的距离是圆锥的高。袁文杰同学对这一概念提出质疑,“这句话去掉“圆心”表述更简洁。因为从圆锥的顶点到底面的距离,距离要求线段最短,所以一定是从顶点到底面圆心。”对于这段话,我给予了肯定,只是解释为了大家更明确高的起点和终点,所以才这样表述。不知道这样的评价是否正确?

拓展:

1、介绍了圆锥的母线,并且要求学生对母线和高进行了对比。

2、对于新增内容加大教学力度,提问:

将直角三角形硬纸板贴在木棒上有几种贴法?哪几种旋转后能成为圆锥?(小结:以任意一条直角边为轴,旋转后可成为圆锥形)。

旋转后形成的圆锥体与直角三角形有什么关系?

人教版六年级下册数学教案【篇4】

课前准备

教师准备PPT课件

教学过程

⊙谈话揭题

上节课,我们从意义、读法、写法、大小比较、改写以及省略尾数保留近似数等几个方面复习了整数的相关知识,这节课我们按类似的思路来复习小数的相关知识。(板书课题:小数的认识)

⊙回顾与整理

1.小数的意义。

过渡:同学们,在生活中我们常常遇到不能用整数表示物体个数的时候,例如:我吃了半个苹果,做一件上衣要用一米半的布料……提问:半个、一米半怎样来表示呢?谁来说说小数的意义?

预设

生1:半个可以用0.5来表示,一米半可以用1.5来表示。

生2:把整数“1”平均分成10份、100份、1000份……这样的几份是十分之几、百分之几、千分之几……可以用小数来表示。

2.小数的数位顺序表。

师:小数的数位顺序表是怎样的?谁能把整数、小数的数位顺序表补充完整?

(课件出示数位顺序表,小数部分留白。指名回答,师填充)

3、小数的读法和写法。

(1)师:怎样读小数?怎样写小数?

预设

生1:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分按从左到右的顺序顺次读出每一个数位上的数字。

生2:写小数的时候,整数部分按照整数的写法写,小数点写在个位的右下角,小数部分顺次写出每一个数位上的数字。

(2)写小数时需要注意什么?

(空位用“0”补足)

4.小数的分类。

(1)谁知道根据小数部分的位数是否有限,小数可以分成哪几类?

预设

生:根据小数部分的位数是否有限,小数可以分成“有限小数”和“无限小数”两类。

(2)谁能举例说明什么是有限小数?什么是无限小数?

预设

生1:小数部分的位数是有限的小数,叫做有限小数。例如:21.7,35.3,0.13都是有限小数。

生2:小数部分的位数是无限的小数,叫做无限小数。例如:8.33…,3.1415926…都是无限小数。

(3)无限小数还可以再细分吗?如果细分,那么可以分成哪几类?

预设

生:无限小数可以分为无限不循环小数和循环小数。

(4)关于无限不循环小数和循环小数,你都了解哪些知识?

预设

生1:一个数的小数部分,数字排列没有规律且位数无限,这样的小数叫做无限不循环小数。例如:π

生2:一个数的小数部分从某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:2.555…0.0333…17.109109…

生3:一个循环小数的小数部分依次不断重复出现的数字叫做这个循环小数的循环节。

例如:3.99…的循环节是“9”,0.5454…的循环节是“54”。

5.小数的性质。

(1)师:谁能说说小数有怎样的性质?

预设

生:在小数的末尾添上0或者去掉0,小数的大小不变。

(2)理解小数的性质时,应该注意什么?

(提示:要注意是“小数的末尾”,而不是“小数点的后面”)

6.小数点位置的变化。

人教版六年级下册数学教案【篇5】

【教学内容】《义教课标实验教科书数学》(人教版)六年级下册第56-58页例4及做一做。

【教学目标】

1、结合具体情境,使学生理解图形按一定的比进行放大或缩小的原理。

2、能按一定的比,将一些简单图形进行放大或缩小。

【教学重点】图形的放大与缩小。

【教学难点】按一定的比把图形放大或缩小。

【教学准备】多媒体

【自学内容】见预习作业

【教学预设】

一、自学反馈

1、什么叫做比例尺?

一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

2、怎样求比例尺?

求图上距离和实际距离的最简整数比。

3、一栋楼房东西方向长40,在图纸上的长度是50c。这幅图纸的比例尺是多少?

(1)学生尝试独立求比例尺。

(2)汇报交流

50c:40=50c:4000c=1:80

(3)你是怎么想的?

二、关键点拨

1、求比例尺。

(1)怎样求一幅图的比例尺?

先写出图上距离与实际距离的比,再化成最简整数比。

(2)比例尺有什么特点?

比例尺是前项或后项为1的比。

(3)比例尺可以怎样表示?

数值比例尺和线段比例尺。(1:500000)或(线段比例尺)

2、求实际距离。

(1)在一副比例尺是1:500000的地图上,量得两地间的距离大约是10c,这两地之间的实际距离大约是多少?

(2)学生尝试独立列比例解答。

(3)汇报交流

解:设这两地之间的实际距离大约是x厘米。

=5000000

5000000c=50

(4)你觉得在求实际距离时要注意什么问题?

实际距离一般用千米做单位。

3、求图上距离

(1)学校要建一个长80米,宽60米的长方形操场,你会画操场的平面图吗?

(2)学生尝试画操场的平面图。

(3)汇报交流

你是怎么画的?【根据图纸大小确定比例尺,可以是数值比例尺也可以是线段比例尺,根据所确定的比例尺求出图上距离,再画图,画图后还要标上比例尺。】

三、巩固练习

1、课本第53页练习八第1题求比例尺。

2、课本第52页做一做第1题。

3、课本第52页做一做第2题。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

人教版六年级下册数学教案【篇6】

教学目标:

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

教学过程:

一、复习回顾

1、等底等高的圆柱与圆锥体积之间有怎样的关系?

2、圆锥的体积怎样计算?

二、基本练习

1、填空

(1)等底等高的圆柱和圆锥的体积相差12立方分米,这个圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(2)等底等高的一个圆柱和一个圆锥的体积和是96立方分米,圆锥的体积是()立方分米,圆柱的体积是()立方分米。

(3)把一个体积是18立方厘米的圆柱削成一个最大的圆锥,削成的圆锥体积是()立方厘米,削去()立方厘米。

(4)一个圆柱的体积、底面积与一个圆锥相等,圆锥的高是9厘米,圆柱的高是()厘米。

(5)圆锥的底面半径是3厘米,体积是6.28立方厘米,这个圆锥的高是()厘米。

2、判断。

(1)圆锥的底面半径扩大3倍,体积也扩大3倍。()

(2)一个正方体和一个圆锥的底面积和高相等,这个正方体的体积是是圆锥体积的`3倍。()

(3)圆锥的底面周长是12.56分米,高是4分米,它的体积是(12.56×4×1/3)立方分米。()

三、综合应用

1、一块圆锥形巧克力,体积是6立方厘米,底面积是4立方厘米,它的高是多少?

2、一个圆锥体积是640立方厘米,高是20厘米,它的底面积是多少平方厘米?

第八课时教学反思

教材中圆锥体积的相对练习较少,但在实际解决问题中却常常需要学生能够灵活应用,所以特别增加了一课时练习。

教学中的一组填空题,对于帮助学生深入理解等底等高圆柱与圆锥的联系很有价值。通过练习,学生们明确了圆柱与等底等高的圆锥体积和为4个圆锥的体积(或4/3个圆柱的体积),而它们的体积相差2个圆锥的体积(或2/3个圆柱的体积)……。掌握这些知识对于解决实际问题很有帮助,如将圆柱削成最大的圆锥,求削去部分的体积是多少,就可直接用圆柱的体积乘2/3(1—1/3)从而使计算简便。

教学中,我也遇到一些阻力——就是学生不愿用方程去解答需要逆向思考的问题,可用算术方法列式又常常对“1/3”发憷。为了更好与初中衔接,我在本节课综合应用环节俨然是一位“推销员”,不断给学生强化方程解法的优势,但在实际应用中全班不足五人愿意采纳这种方法。而用算术方法解答,则必须首先明确:若圆柱和圆锥体积和高(或者是底面积)相等,那么圆锥的底面积(或高)是圆锥的3倍。

[再教建议]针对学生思维习惯,在教学填空第4小题时不仅要讲清原因,而且应要举一反三,促使学生在深入理解的基础上切实掌握体积相等的圆柱与圆锥之间的联系。

人教版六年级下册数学教案【篇7】

教材分析

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了圆柱的认识的基础上开展的.教材中选用了许多来自现实生活中的问题,通过学生想象和动手操作,使学生进一步理解圆柱的侧面展开是一个长方形或一个正方形,底面是两个圆的基础上,掌握圆柱的表面积的求法,获得求“圆柱体表面积”的算法。

学情分析

由于每个学生的学习水平有差异,在学习中可能会出现部分学生不知道圆柱侧面转化成学过的平面图形;或是有的同学已经知道怎么求圆柱的侧面积,但不能结合操作清晰地表述圆柱侧面积计算方法的推导过程。教师可以引导学生在上节课的基础上学习本节课,让学生通过动手操作,小组讨论得出圆柱的表面积的求法,及在生活中的应用。

教学目标

知识目标:理解圆柱体表面积的含义及求法。 能力目标:通过小组合作、独立操作推导并掌握求圆柱的表面积的方法,并能解决实际问题。

情感目标:体验成功的收获,体会小组合作探索成功过程的喜悦。

教学重点和难点

重点:教师引导,动手操作得出求圆柱表面积的方法。

难点:计算方法在生活中的应用。

教学过程

一、复习导入:

1、圆柱由几个面组成?上下两个面是什么?侧面展开是什么图形?

2、圆面积怎样求?

3、长方形的面积呢?

二、创设情境,引起兴趣:

出示一顶厨师帽,让学生观察,做着一定帽需要多少布料?用我们以前学的知识能解决吗?教师借机引出课题并板书课题《圆柱表面积的求法》

三、 自主探究,发现问题。

1、分组,讨论:

(1)、动手将圆柱的侧面沿着高剪开 。(你发现了什么?)

圆柱的侧面剪开发现侧面是一个长方形(正方形),

侧面积=长方形的面积=长×宽=地面周长×高。

重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)这个长方形与圆柱体的哪个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

(2)、复习引导:(用旧解新)

上下两个圆的面积怎样求?(如果已知底面半径就能求出底面积)

(3)、小结:小组讨论,将公式延伸。

圆柱表面积 = 圆柱的侧面积+底面积×2

=Ch+2π r2

=πdh+2π r2

2、知识的运用:(回到情景创设)

(1)、出示例题:

例2:假如一顶厨师的帽子,高 28厘米,帽顶半径10厘米,做一顶帽子至少需要多少面料?( 用进一法结果保留正是整十平方厘米)

(2)、独立试做:

(3)、集体讲评。

(4)、讲解进一法。

3.巩固练习:

四、课堂总结:

这一节课重点学习了圆柱表面积的计算方法及运用。

人教版六年级下册数学教案【篇8】

教学内容:教材第60-61页,练一练,练习十一11-18题)

教学要求:

1、使学生进一步认识整除里的一些概念,理解和认识这些概念之间的联系与区别,能应用概念进行分析,判断,进一步发展思维能力。

2、使学生正确掌握分解质因数和求两个数的最大公约数,求两个或三个数最小公倍数的方法,并能按照方法分解质因数和求出两个数的最大公约数,两个或三个数的最小公倍数。

教学过程:

一、揭示课题

1、口算(指名口算课本第64页第11题)

2、引入新课

我们已经复习了整小数的意义,今天复习数的整除(板书课题),通过复习,加深对整数特性的认识,掌握好数的整除的意义及其中的一些概念,认识概念之间的联系和区别,能熟练地用短除法分解质因数和求最大公约数最小公倍数。

二、复习约数和倍数

1、提问:什么是整除(板书整除)如果A能被B整除,必须具备哪些条件?

当A能被B整除,也就是B整除A时,还可以怎样说?板书:

约数

倍数

2、做练一练第1题

学生做在课本上,说明倍数和约数的依存关系。

3、学生练习

(1)从小到大写出9的五个倍数

复习约数倍数相关知识(略)

(2)写出18的所有约数

三、复习质数合数

1、提问按照一个数约数的个数分类,除0以外的自然数可以分为几类:

板书:1

质数

合数

怎样的数是质数?怎样的数是合数?1为什么既不是质数,也不是合数。

2、口答:

(1)说出比10小的质数和合数。

(2)最小的质数和最小的合数各是几?

(3)下面哪些是质数?哪些是合数?

785123579190

3、提问:你能把90写成质数相科乘的形式吗(板书)这里的因数叫做90的什么数?(板书:质因数,分解质因数)

4、做练一练第3题

练后指名口答,集体订正。

四、复习公约数和公倍数。

1、学生练习

(1)写出18和24所有的公约数,指出最大公约数。

(2)从小到大写出4和6的五个公倍数,指出其中最小的公倍数。

学生口答,老师板书

提问:什么叫做公约数和最大公约数?什么叫做公倍数和最小公倍数?

(板书公约数、最大公约数公倍数最小公倍数)

2、练一练第4题

集体练习,指名口答,说一说方法怎样归纳三种关系?

追问:用短除法求最大公约数和最小公倍数有什么相同和不同?

五、复习

能被2、5、3整除各有什么特征

1、提问:能被2、5、3整除各有什么特征。

(板书:能被2、5、3整除的数)

2、练一练第5题

提问:这里能被2整除的数都是什么数?不能被整数的数都是什么数,

板书:偶数

奇数

想一想,自然数可以分为哪几类?

六、课堂小结

根据板书内容,说说相互之间有什么联系。

七、课堂练习

1、练习十一和12题

2、课堂作业

(练习十一第15、16题、17题中(3)(4)

八、课外作业:练习十一第18题。

相关推荐

  • 人教版六年级下册数学教案8篇 经验告诉我们,成功是留给有准备的人。为了使每堂课能够顺利的进展,教师通常会准备好下节课的教案,大部分的教案都是为了让学生的学习效率得到提升,教案对教学过程进行预测和推演,从而更好地实现教学目标。那么一篇好的幼儿园教案要怎么才能写好呢?小编经过整理,为你编辑了人教版六年级下册数学教案8篇,欢迎分享给你...
    2023-03-04 阅读全文
  • 六年级下册的小学数学教案人教版 作为杰出的教学工作者,为了教学顺利的展开。每位老师都会提前准备一份教案,以便于提高讲课效率。让同学听的快乐,老师自己也讲的轻松。如何才能编写一份比较全面的教案呢?我们特地为您收集整理“六年级下册的小学数学教案人教版”,欢迎大家阅读,希望对大家有所帮助。...
    2022-10-05 阅读全文
  • 人教版二年级数学下册教案 小学数学整体而言是最简单的,但是对小学生来说就不一定了,身为小学的数学教师,为了让学生有兴趣自已动作操作,并与同桌交流,教师需要提前把教学教案给写好!那么,有哪些可以值得参考的小学数学教案呢?你可以读一下小编整理的人教版二年级数学下册教案,供您参考,并请收藏本页!1、进一步巩固对有余数除法的认识和理...
    2023-11-08 阅读全文
  • 人教版三年级数学下册教案 备课前做好课堂所需教案课件是非常重要的。每位教师都应该熟知如何撰写教案和课件,以满足学生的学习需求。要想写出令自己满意的教案课件,科学编写是必不可少的。我们为了让您更加满意,在此编辑了“人教版三年级数学下册教案”,希望能对您有所帮助。别忘了动动手指,将此文章收藏!...
    2023-06-03 阅读全文
  • 二年级数学下册教案范本 教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。教案是课堂教学效果的评价和改进的重要工具,我们需要从哪些角度来写教案课件呢?我在教育网站上看到一篇关于“二年级数学下册教案”的文章内容翔实,这个网页很有用所以请务必加入收藏夹!...
    2024-03-25 阅读全文

经验告诉我们,成功是留给有准备的人。为了使每堂课能够顺利的进展,教师通常会准备好下节课的教案,大部分的教案都是为了让学生的学习效率得到提升,教案对教学过程进行预测和推演,从而更好地实现教学目标。那么一篇好的幼儿园教案要怎么才能写好呢?小编经过整理,为你编辑了人教版六年级下册数学教案8篇,欢迎分享给你...

2023-03-04 阅读全文

作为杰出的教学工作者,为了教学顺利的展开。每位老师都会提前准备一份教案,以便于提高讲课效率。让同学听的快乐,老师自己也讲的轻松。如何才能编写一份比较全面的教案呢?我们特地为您收集整理“六年级下册的小学数学教案人教版”,欢迎大家阅读,希望对大家有所帮助。...

2022-10-05 阅读全文

小学数学整体而言是最简单的,但是对小学生来说就不一定了,身为小学的数学教师,为了让学生有兴趣自已动作操作,并与同桌交流,教师需要提前把教学教案给写好!那么,有哪些可以值得参考的小学数学教案呢?你可以读一下小编整理的人教版二年级数学下册教案,供您参考,并请收藏本页!1、进一步巩固对有余数除法的认识和理...

2023-11-08 阅读全文

备课前做好课堂所需教案课件是非常重要的。每位教师都应该熟知如何撰写教案和课件,以满足学生的学习需求。要想写出令自己满意的教案课件,科学编写是必不可少的。我们为了让您更加满意,在此编辑了“人教版三年级数学下册教案”,希望能对您有所帮助。别忘了动动手指,将此文章收藏!...

2023-06-03 阅读全文

教案课件既关系到教学步骤,也关系到教学的课程标准,每位老师都要用心的考虑自己的教案课件。教案是课堂教学效果的评价和改进的重要工具,我们需要从哪些角度来写教案课件呢?我在教育网站上看到一篇关于“二年级数学下册教案”的文章内容翔实,这个网页很有用所以请务必加入收藏夹!...

2024-03-25 阅读全文
Baidu
map