幼儿教师教育网,为您提供优质的幼儿相关资讯

平方差公式教案

发布时间:2023-05-21 平方差公式教案

平方差公式教案(汇总7篇)。

下面是我们分享的平方差公式教案,希望这篇文章能对您有所帮助。在教学过程中,老师的重要任务之一就是准备好教案和课件,相信老师们对于如何撰写教案和课件已经非常熟悉了。在授课时,老师们会根据事先准备好的教案和课件进行讲课。

平方差公式教案【篇1】

15.2 乘法公式

15.2.1平方差公式

教学目标

①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.

②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.

③了解平方差公式的几何背景,体会数形结合的思想方法.

教学重点与难点

重点:平方差公式的推导及应用.

难点:用公式的结构特征判断题目能否使用公式.

教学准备

卡片及多媒体课件

教学设计

引入

同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:

探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?

(1)(x+1)(x-1)=

(2)(m+2)(m-2)=

(3)(2x+1)(2x-1)=

引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.

注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.

举例

再举几个这样的运算例子.

注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.

验证

我们再来计算(a+b)(a-b)=

公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例→归纳→猜想→验证→用数学符号表示.

注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.

概括

平方差公式及其形式特征.

教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.

应用

教科书第152页例1运用平方差公式计算:

(1)(3x+2)(3x-2)

(2)(b+2a)(2a-b)

(3)(-x+2y)(-x-2y)

填表:

(a+b)(a-b) a b a2—b2 最后结果

(3x+2)(3x-2) 2 (3x)2-22

(b+2a)(2a-b)

(-x+2y)(-x-2y)

对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.

注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.

(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.

(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.

教科书第152页例2计算:

(1)102×98

(2)(y+2)(y-2)-(y-1)(y+5)

此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.

注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.

(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.

巩固

教科书第153页练习1、2

练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.

注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.

解释

你能根据下面的两个图形解释平方差公式吗?

多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.

注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.

(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.

小结

谈一谈:你这一节课有什么收获?

注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.

作业

1.必做题:教科书第156页习题15.2第1题

2.选做题:计算:

(1)x2+(y-x)(y+x)

(2)20082-20xx×20xx

(3)(-0.25x-2y)(-0.25x+2y)

(4)(a+ b)(a- b)-(3a-2b)(3a+2b)

教学后记

平方差公式教案【篇2】

教学目标:

一、 知识与技能

1、 参与探索平方差公式的过程,发展学生的推理能力 2、 会运用公式进行简单的乘法运算。

二、 过程与方法

1、 经历探索过程,学会归纳推导出某种特种特定类型乘法并用简单的

数学式子表达出,即给出公式。

2、 在探索过程的教学中,培养学生观察、归纳的能力,发展学生的符

号感和语言描述能力。

三、 情感与态度

以探索、归纳公式和简单运用公式这一数学情景,加深学生的体验,增加学习数学和使用的信心。培养学生由观察-发现-归纳-验证-使用这一数学方法的逐步形成.

教学重点: 公式的简单运用

教学难点: 公式的推导

教学方法: 学生探索归纳与教师讲授结合

课前准备:投影仪、幻灯片

平方差公式教案【篇3】

一、教学目标:

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;

3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。

二、重点、难点:

重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。

三、教学方法

以教师的精讲、引导为主,辅以引导发现、合作交流。

四、教学过程

(一)创设问题情境,引入新课

1、你会做吗?

(1)(x+1)(x—1)=_____=()()

(3)(3x+2)(3x—2)= _____=()()

2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)

(二)探索规律,归纳平方差公式

交流上面第1题的答案,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)

我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)

(三)尝试探究

(四)巩固练习

1、运用平方差公式计算:

(l)(x+a)(x—a)

(2)(m+n)(m—n)(3)(a+3b)(a—3b)

(4)(1—5y)(l+5y)(5)998×1002

(6)395×405

2、直接写出答案:

(l)(—a+b)(a+b)

(2)(a—b)(b+a)

(3)(—a—b)(—a+b)

(4)(a—b)(—a—b)(5)999×1001

(6)×(让学生独立完成,互评互改。)

(五)小结

1.什么是平方差公式?

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。

(学生回答,教师总结)

(六)作业

P106习题1—5题

七、板书设计:

教学反思

通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。

平方差公式教案【篇4】

教学目标

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力。

教学重点和难点

重点:平方差公式的应用。

难点:用公式的结构特征判断题目能否使用公式。

教学过程设计

一、师生共同研究平方差公式

我们已经学过了多项式的乘法,两个二项式相乘,在合并同类项前应该有几项?合并同类项以后,积可能会是三项吗?积可能是二项吗?请举出例子。

让学生动脑、动笔进行探讨,并发表自己的见解。教师根据学生的回答,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(当乘式是两个数之和以及这两个数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于乘式中这两个数的平方差)

继而指出,在多项式的乘法中,对于某些特殊形式的多项式相乘,我们把它写成公式,并加以熟记,以便遇到类似形式的多项式相乘时就可以直接运用公式进行计算。以后经常遇到(a+b)(a-b)这种乘法,所以把(a+b)(a-b)=a2-b2作为公式,叫做乘法的平方差公式。

在此基础上,让学生用语言叙述公式。

二、运用举例变式练习

例1计算(1+2x)(1-2x)。

解:(1+2x)(1-2x)

=12-(2x)2

=1-4x2.

教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。

例2计算(b2+2a3)(2a3-b2)。

解:(b2+2a3)(2a3-b2)

=(2a3+b2)(2a3-b2)

=(2a3)2-(b2)2[笔稿范文网 GX86.cOM]

=4a6-b4.

教师引导学生发现,只需将(b2+2a3)中的两项交换位置,就可用平方差公式进行计算。

课堂练习

运用平方差公式计算:

(1)(x+a)(x-a);

(2)(m+n)(m-n);

(3)(a+3b)(a-3b);

(4)(1-5y)(l+5y)。

例3计算(-4a-1)(-4a+1)。

让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。

解法1:(-4a-1)(-4a+1)

=[-(4a+l)][-(4a-l)]

=(4a+1)(4a-l)

=(4a)2-l2

=16a2-1.

解法2:(-4a-l)(-4a+l)

=(-4a)2-l

=16a2-1.

根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-l2后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。

课堂练习

1、口答下列各题:

(l)(-a+b)(a+b);(2)(a-b)(b+a);

(3)(-a-b)(-a+b);(4)(a-b)(-a-b)。

2、计算下列各题:

(1)(4x-5y)(4x+5y);(2)(-2x2+5)(-2x2-5);

教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解法。

三、小结

1、什么是平方差公式?

2、运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。

四、作业

1、运用平方差公式计算:

(l)(x+2y)(x-2y);(2)(2a-3b)(3b+2a);

(3)(-1+3x)(-1-3x);(4)(-2b-5)(2b-5);

(5)(2x3+15)(2x3-15);(6)(0.3x-0.l)(0.3x+l);

平方差公式教案【篇5】

一、教材分析

本节课选自人教版八年级上册第14章第二节内容,它是在学生已经掌握了多项式乘法之后,自然过渡到具有特殊形式的多项式的乘法,是从一般到特殊的认知规律的典型范例.对它的学习和研究,不仅给出了特殊的多项式乘法的简便算法,而且为以后的因式分解、分式的化简等内容奠定了基础,同时也为学习完全平方公式提供了方法.因此,平方差公式作为初中阶段的第一个公式,在教学中具有很重要地位,同时也是最基本、用途最广泛的公式之一.

二、学情分析

1.学生的知识技能基础:学生在前面的学习中,已经学习了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感.经过一个学期的培养,学生已经具备了小组合作、交流的能力.学生刚学过多项式的乘法,已具备学习并运用平方差公式的知识结构,通过创造问题情境,让学生承担任务,在探究相应问题中,建立并运用公式,从而使拓展学生知识技能结构成为可能.通过实际问题的探究,学生已感受到多项式乘法运算的重要性,同时,具备了对式的运算基础“快”“准”的积极心理,学生已具备学习公式的知识与技能结构,通过新课程教学的实施,培养学生具有独立探索、合作交流的习惯.

2.学生活动经验基础:学生已熟练掌握了幂的运算和整式乘法,但在进行多项式乘法运算时常常会出现符号错误及漏项等问题;另外,数学公式中字母具有高度概括性、广泛应用性.

三、教学目标

1.知识目标:经历平方差公式的探索及推导过程,掌握平方差公式的结构特征并能熟练应用.

2.能力目标:运用公式进行简单的运算,获得一些数学活动的经验,进一步增强学生的符号感、推理和归纳能力及解决问题的能力.

3.情感目标:让学生经历“特殊到一般再到特殊”(即:特例─归纳─猜想─验证─用数学符号表示—解决问题)这一数学活动过程,积累数学活动的经验,体会数学的简洁美和数形结合的思想方法.培养他们合情推理和归纳的能力以及在解决问题过程中与他人合作交流的意识.

通过几方面的合力,提高学生归纳概括、逻辑推理等核心素养水平.

四、教学重难点

教学重点:体会公式的发现和推导过程,理解公式的本质和结构特征,能用自己的语言说明公式及其特点;并会运用公式进行简单的计算.

教学难点:从广泛意义上理解公式中的字母含义,具体问题要具体分析,会运用公式进行计算.

五、信息技术应用思路

1.本课运用了信息技术辅助教学,主要使用的技术有:PPT课件、几何画板.

2.使用几何画板技术,演示利用动态绘图软件研究周期性快速切换、更改周期,形象演示图形变化,利用面积法推导平方差公式;在导入、难点突破、练习巩固等环节使用信息技术.

3.预期效果:激发学生学习兴趣;找准并突破难点;提高课堂学习效率.整个教学过程用PPT节约了时间,使课容量适中;多媒体更能吸引学生的注意力,更利于课堂的完整.

六、教学过程设计

(一)创设情境,导入课题

问题1:美丽壮观的城市广场,是人们休闲旅游的地方,已经成为现代化城市的一道风景线.某城市广场呈长方形,长为1003米,宽997米.

你能用简便的方法计算出它的面积吗?看谁算得快:

师生活动:学生欣赏图片,感受生活中的数学问题,并进行生活中的数学向数学模型转换.

信息技术支持:PPT演示由现实中的实际问题入手,创设情境,从中挖掘蕴含的数学问题.

(二)探索新知,尝试发现

问题2:时代中学计划将一个边长为m米的正方形花坛改造成长(m+1)米,宽为(m-1)米的长方形花坛.你会计算改造后的花坛的面积吗?

计算下列多项式的积,你能发现什么规律?

(1)(m+1)(m-1)= ;

(2)(5+x)(5-x)= ;

(3)(2x+1)(2x-1)= .

师生活动:学生在教师的引导下,通过小组讨论探究,进行多项式的乘法,计算出结论.

信息技术支持:PPT动画演示.

结论是一个平方减去另一个平方的形式,效果十分鲜明.

(三)总结归纳,发现新知

问题3:依照以上三道题的计算回答下列问题:

(1)式子的左边具有什么共同特征?

(2)它们的结果有什么特征?

(3)能不能用字母表示你的发现?

问题4:你能用文字语言表示所发现的规律吗?

教师提问,学生通过自主探究、合作交流,发现规律:两个数的和与这两个数的差的积,等于这两个数的平方差.

师生活动:学生在教师的引导下,通过小组讨论探究,归纳平方差公式的语言叙述.式子左边是两个数的和与这两个数的差的积,右边是这两个数的平方差,

信息技术支持:PPT和几何画板演示,培养了学生的探究意识和合情推理的能力以及概括总结知识的能力.

(四)数形结合,几何说理

问题5:在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?

提示:a2-b2与(a+b)(a-b)都可表示该图形的面积.

师生活动:通过学生小组合作,完成剪拼游戏活动,利用这些图形面积的相等关系,进一步从几何角度验证了平方差公式的正确性,渗透了数形结合的思想.

信息技术支持:PPT演示,进一步利用动画的演示巩固对平方差公式的理解程度,培养了学生的应用意识.

(五)剖析公式,发现本质

1.左边是两个二项式相乘,其中“a与a”是相同项,“b与-b”是相反项;右边是二项式,相同项与相反项的平方差,即(a+b)(a-b)=a2-b2.

2.让学生说明以上四个算式中,哪些式子相当于公式中的a和b,明确公式中a和b的广泛含义,归纳得出:a和b可能数或代表式.

师生活动:在认清公式的结构特征的基础上,进一步剖析a、b的广泛含义,抓住概念的核心.

信息技术支持:通过PPT练习实现了知识向能力的转化,让学生主动尝试运用所学知识寻求解决问题.

(六)巩固运用,内化新知

问题6:判断下列算式能否运用平方差公式计算:

(1)(2x+3a)(2x–3b);

(2)(-m+n)(m-n).

问题7:利用平方差公式计算:

(1)(3x +2y)(3x-2y);

(2)(-7+2m2)(-7-2m2).

师生活动:学生经过思考、讨论、交流,进一步熟悉平方差公式的本质特征,掌握运用平方差公式必须具备的条件.

信息技术支持:PPT展示书写步骤,有利于节省时间,提高效率,规范学生书写.

(七)拓展应用,强化思维

问题8:利用平方差公式计算情景导航中提出的问题:

即:1003×997=(1000+3)(1000-3)=10002-32=1000000-9=999991.

问题9:小明家有一块“L”形的自留地,现在要分成两块形状、面积相同的部分,种上两种不同的蔬菜,请你来帮小明设计,并算出这块自留地的面积.

师生活动:设计此组题旨在从正反两方面灵活运用平方差公式,由结果追溯算式中的相同项和相反项,关键在于理解公式结构特征,同时训练了学生逆向思维能力.

信息技术支持:PPT展示书写步骤,有利于节省时间.

(八)总结概括,自我评价

问题10:这节课你有哪些收获?还有什么困惑?

提示:从知识和情感态度两个方面加以小结.

师生活动:使学生对本节课的知识有一个系统全面的认识,分组讨论后交流.

信息技术支持:PPT演示,复习、巩固本节课的知识,在掌握基础知识的前提下,增加提高练习,适当增加灵活度,进一步深化对知识的理解.

(九)课后作业

1.必做题:课本P36习题2.1A组1、2.

2.选做题:课本P36习题2.1B组1、2.

作业分层处理有较大的弹性,体现作业的巩固性和发展性原则,尊重学生的个体差异.

七、教学反思

1.本节课通过与学生生活紧密联系问题及多媒体图画设计引入,激发了学生学习兴趣,同时在教学中以学生自主探究为主,为不同学生设计练习,有利于提升了学生的自信心.

2.多媒体的应用能使学生充分体验到教育信息技术的优点,在操作过程中体会学习的快乐,特别是操作简单,学习效率大大提升,在学习过程中使教学软件与本节课的教学内容紧密结合在一起,使学生的思维始终关注学科本质.

3.信息技术的应用,便于及时发现问题,反馈教学,使教与学更有层次性、针对性、实效性.教师要善于抓住这个契机,充分利用多媒体技术,利用图形结合功能,降低难度,增强直观性.信息技术的应用大大提高了课堂效率.

平方差公式教案【篇6】

教学目的

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.

教学重点和难点:公式的应用及推广.

教学过程:

一、复习提问

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形.希望推出公式:

a2-b2=(a+b)(a-b)

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.

3.判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

二、新课

例1 运用平方差公式计算:

(1)102×98; (2)(y+2)(y-2)(y2+4).

解:(1)102×98 (2)(y+2)(y-2)(y2+4)

=(100+2)(100-2) =(y2-4)(y2+4)

=1002-22=10000-4 =(y2)2-42=y4-16.

=9996;

2.运用平方差公式计算:

(1)103×97; (2)(x+3)(x-3)(x2+9);

(3)59.8×60.2; (4)(x- )(x2+ )(x+ ).

平方差公式教案【篇7】

教学目标

1.经历探索平方差公式的过程,会推导平方差公式;

2.能利用平方差公式进行简单的运算。

在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。

激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。

重点难点

重点

平方差公式的推导和运用

难点

平方差公式的结构特点和灵活运用。

教学过程

一、复习导入

1.回顾多项式乘多项式的法则。

2.创设情境:你能快速地口算下列式子的值吗?

(1);(2).

师生共同想办法,想到能否把数转化成较整的数?

变形成:,

再试试把它当成多项式乘法来算算,有什么发现?

继续用你发现的方法算算,,,成功了吗?

我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。

二、新课讲解

探究新知

1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?

讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。

2.把式子里具体的数换成字母表示的数,结论还成立吗?

3.从上面的计算中你有什么发现呢?

引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。

4.你能通过演算推导出平方差公式吗?

最终得到平方差公式:

平方差公式的理解应用

下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)

(1);(2);(3);

(4);(5);(6).

学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。

三、典例剖析

例1运用平方差公式计算:

师生共同解答,教师板书。初学运用时要写清楚步骤。

例2运用平方差公式计算:

学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。

例3.计算:

学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。

四、课堂练习

1.下面各式的计算对不对?如果不对,应怎样改正?

(1);

2.运用平方差公式计算:

(1);(2);

(3);(4).

3.计算:

(1);(2);

教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

五、小结

师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

P50第1、6题

YJS21.cOm更多幼儿园教案小编推荐

[荐]平方差公式课件教案(集锦10篇)


教师在备课前制定教案课件是一种负责任的表现,他们对于教案课件的要求也比较熟悉。有详细的教学教案能帮助教师深入地理解课程知识的发展方向。如果您需要这方面的帮助,幼儿教师教育网小编为大家整理了《平方差公式课件教案》这篇文章,希望能有所帮助并与身边的朋友分享。

平方差公式课件教案 篇1

教材分析

平方差公式是在学习多项式乘法等知识的基础上,自然过渡到具有特殊形式的多项式的乘法,体现教材从一般到特殊的意图。教材为学生在教学活动中获得数学的思想方法、能力、素质提供了良好的契机。对它的学习和研究,不仅得到了特殊的多项式乘法的简便算法,而且为以后的因式分解,分式的化简、二次根式中的分母有理化、解一元二次方程、函数等内容奠定了基础,同时也为完全平方公式的学习提供了方法,因此,平方差公式在教材中有承上启下的作用,是初中阶段一个重要的公式。

学情分析

学生是在学习积的乘方和多项式乘多项式后学习平方差公式的,但在进行积的乘方的运算时,底数是数与几个字母的积时往往把括号漏掉,在进行多项式乘法运算时常常会确定错某些次符号及漏项等问题。学生学习平方差公式的困难在于对公式的结构特征以及公式中字母的广泛的理解,当公式中a、b是式时,要把它括号在平方。

教学目标

1、知识与技能:经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行运算.

2、过程与方法:在探索平方差公式的过程中,发展学生的符号感和归纳能力、推理能力.在计算的过程中发现规律,掌握平方差公式的结构特征,并能用符号表达,从而体会数学语言的简洁美.

3、情感、态度与价值观:激发学习数学的兴趣.鼓励学生自己探索,有意识地培养学生的合作意识与创新能力.

教学重点和难点

重点:平方差公式的推导和应用.

难点:理解掌握平方差公式的结构特点以及灵活运用平方差公式解决实际问题.

平方差公式课件教案 篇2

一、教学目标:

1、使学生理解和掌握平方差公式,并会用公式进行计算;

2、注意培养学生分析、综合和抽象、概括以及运算能力,培养应用数学的意识;

3、在紧张而轻松地教学氛围内,进一步激发学生的学习兴趣热情。

二、重点、难点:

重点是掌握公式的结构特征及正确运用公式。难点是公式推导的理解及字母的广泛含义。

三、教学方法

以教师的精讲、引导为主,辅以引导发现、合作交流。

四、教学过程

(一)创设问题情境,引入新课

1、你会做吗?

(1)(x+1)(x—1)=_____=()()

(3)(3x+2)(3x—2)= _____=()()

2、能否用简便方法运算:×(这里需要用到平方差公式,设疑激发学生兴趣。)

(二)探索规律,归纳平方差公式

交流上面第1题的答案,引导学生进一步思考:

两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?

(合作交流,探究新知:两数之和与这两数之差相乘时,积是二项式。这是因为具备这样特点的两个二项式相乘,积的四项中,会出现互为相反数的两项,合并这两项的结果为零,于是就剩下两项了。而它们的积等于这两个数的平方差。)

我们把(a+b)(a—b)=a—b叫做乘法的平方差公式。再遇到类似形式的多项式相乘时,就可以直接运用公式进行计算。(在此基础上,让学生用语言叙述公式,并让学生熟记。)

(三)尝试探究

(四)巩固练习

1、运用平方差公式计算:

(l)(x+a)(x—a)

(2)(m+n)(m—n)(3)(a+3b)(a—3b)

(4)(1—5y)(l+5y)(5)998×1002

(6)395×405

2、直接写出答案:

(l)(—a+b)(a+b)

(2)(a—b)(b+a)

(3)(—a—b)(—a+b)

(4)(a—b)(—a—b)(5)999×1001

(6)×(让学生独立完成,互评互改。)

(五)小结

1.什么是平方差公式?

2.运用公式要注意什么?

(1)要符合公式特征才能运用平方差公式;

(2)有些式子表面不能应用公式,但实质能应用公式,要注意分清a、b。

(学生回答,教师总结)

(六)作业

P106习题1—5题

七、板书设计:

教学反思

通过精心备课,本节课在教学中是比较成功的。成功之处在于整个教学流程环环相扣,层层递进,抓住了学生思维这条主线,遵循由浅入深,由特殊到一般的认知规律,引起学生的兴趣。使他们能够积极参与其中,同时,使他们的思维得到了锻炼和发展。不足之处:时间安排不是很合理,前松后紧。课堂上没有给更多的学生提供展示自己思考结果的机会,过于注重“收”,而“放”不够。

平方差公式课件教案 篇3

教学目标

1.经历探索平方差公式的过程,会推导平方差公式;

2.能利用平方差公式进行简单的运算。

在探索平方差公式的过程中,发展学生的符号感和推理能力。在计算的过程中发现规律,并能用符号表达,体会数学语言的严谨与简洁。

激发学习数学的兴趣,鼓励学生自己探索,培养学生的合作意识与创新能力。

重点难点

重点

平方差公式的推导和运用

难点

平方差公式的结构特点和灵活运用。

教学过程

一、复习导入

1.回顾多项式乘多项式的法则。

2.创设情境:你能快速地口算下列式子的值吗?

(1);(2).

师生共同想办法,想到能否把数转化成较整的数?

变形成:,

再试试把它当成多项式乘法来算算,有什么发现?

继续用你发现的方法算算,,,成功了吗?

我们把这个有趣的结论整理并推广,就可以得到今天要学习的一个乘法公式,平方差公式。

二、新课讲解

探究新知

1.观察相乘的两个多项式有什么特点?运算的结果有什么特点?

讨论交流后总结出:两个数的和与这两个数的差的积,等于这两个数的平方差。

2.把式子里具体的数换成字母表示的数,结论还成立吗?

3.从上面的计算中你有什么发现呢?

引导学生发现对于不同形式的两个数,都有它们的和与它们的差的积都等于它们的平方差!用公式表示就是:,这里字母是任意形式的两个数。这个公式叫做平方差公式。

4.你能通过演算推导出平方差公式吗?

最终得到平方差公式:

平方差公式的理解应用

下列多项式乘法中,能用平方差公式计算的是_______________(填写序号)

(1);(2);(3);

(4);(5);(6).

学生分组讨论交流,归纳什么情况下可以使用平方差公式。通过讨论,对平方差公式的理解达到一个新的高度:所谓两数和、两数差,从多项式的角度来看,就是有一项相同(),有一项相反(和),只要相乘的两个多项式具备这样的特点,都可以用平方差公式计算。不难判断,上面的式子中(2)、(5)、(6)都可以用平方差公式计算。

三、典例剖析

例1运用平方差公式计算:

师生共同解答,教师板书。初学运用时要写清楚步骤。

例2运用平方差公式计算:

学生解答,关注学生是否理解平方差公式,能否正确识别乘法公式里的。

例3.计算:

学生解答,教师巡视,关注学生能否合理变形,灵活运用公式计算。

四、课堂练习

1.下面各式的计算对不对?如果不对,应怎样改正?

(1);

2.运用平方差公式计算:

(1);(2);

(3);(4).

3.计算:

(1);(2);

教师要注意发现学生的错误,组织学生对错误进行分析,对于第1题可以引导学生分析导致错误的原因。

五、小结

师生共同回顾平方差公式的结构特点,体会公式的作用,交流计算的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。

六、布置作业

P50第1、6题

平方差公式课件教案 篇4

15.2 乘法公式

15.2.1平方差公式

教学目标

①经历探索平方差公式的过程,进一步发展学生的符号感和推理能力、归纳能力.

②会推导平方差公式并掌握公式的结构特征,能运用公式进行简单的计算.

③了解平方差公式的几何背景,体会数形结合的思想方法.

教学重点与难点

重点:平方差公式的推导及应用.

难点:用公式的结构特征判断题目能否使用公式.

教学准备

卡片及多媒体课件

教学设计

引入

同学们,前面我们刚刚学习了整式的乘法,知道了一般情形下两个多项式相乘的法则.今天我们要继续学习某些特殊情形下的多项式相乘.下面请同学们应用你所学的知识,自己来探究下面的问题:

探究:计算下列多项式的积,你能发现它们的运算形式与结果有什么规律吗?

(1)(x+1)(x-1)=

(2)(m+2)(m-2)=

(3)(2x+1)(2x-1)=

引导学生用自己的语言叙述所发现的规律,允许学生之间互相补充,教师不急于概括.

注:平方差公式是多项式乘法运算中一个重要的公式,它的得出可以直接利用多项式与多项式相乘的运算法则,利用多项式乘法推导乘法公式是从一般到特殊的过程,对今后学习其他乘法公式的推导有一定的指导意义,同时也可培养学生观察、归纳、概括等能力,因此在教学中,首先应让学生思考:你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同)、归纳(可能具有的规律)、提出猜想的过程,学生在发现规律后,还应通过符号运算对规律进行证明.

举例

再举几个这样的运算例子.

注:让学生独立思考,每人在组内举一个例子(可口述或书写),然后由其中一个小组的代表来汇报.

验证

我们再来计算(a+b)(a-b)=

公式的推导既是对上述特例的概括,更是从特殊到一般的归纳证明,在此应注意向学生渗透数学的思想方法:特例→归纳→猜想→验证→用数学符号表示.

注:这里是对前边进行的运算的讨论,目的是让学生通过观察、归纳,鼓励他们发现这个公式的一些特点,如公式左右边的结构特征,为下一步运用公式进行简单计算打下基础.

概括

平方差公式及其形式特征.

教师可以在前面的基础上继续鼓励学生发现这个公式的一些特点:如公式左、右边的结构,并尝试说明这些特点的原因.

应用

教科书第152页例1运用平方差公式计算:

(1)(3x+2)(3x-2)

(2)(b+2a)(2a-b)

(3)(-x+2y)(-x-2y)

填表:

(a+b)(a-b) a b a2—b2 最后结果

(3x+2)(3x-2) 2 (3x)2-22

(b+2a)(2a-b)

(-x+2y)(-x-2y)

对本例的前面两个小题可以采用学生独立完成,然后抢答的形式完成;第三小题可采用小组讨论的形式,要求学生在给出表格所提示的解法之后,思考别的解法:提取后一个因式里的负号,将2y看作“a”,将x看作“b”,然后运用平方差公式计算.

注:(1)正确理解公式中字母的广泛含义,是正确运用这一公式的关键.设计本环节,旨在通过将算式中的各项与公式里的a、b进行对照,进一步体会字母a、b的含义,加深对字母含义广泛性的理解:即它们既可以是数,也可以是含字母的整式.

(2)在具体计算时,当有一个二项式两项都负时,往往不易判明a、b,如第三小题,此时可以通过小组合作交流,放手让学生去思考、讨论,有助于学生思维互补、有条理地思考和表达,更有助于学生合作精神的培养.

(3)例1第(3)小题引导学生多角度思考问题,可以加深对公式的理解.

教科书第152页例2计算:

(1)102×98

(2)(y+2)(y-2)-(y-1)(y+5)

此处仍先让学生独立思考,然后自主发言,口述解题思路,允许他们算法的多样化,然后通过比较,优化算法,达到简便计算的目的.

注:(1)运用平方差公式进行数的简便运算的关键是根据数的形式特征,把相乘的两数化成两数和与两数差的乘积形式,教学时可让学生自己寻找相乘两数的形式特征.

(2)第二小题要引导学生注意到一般形式的整式乘法与特殊形式的整式乘法的区别与联系,强调:只有符合公式要求的乘法,才能运用公式简化运算,其余的运算仍按整式乘法法则进行.

巩固

教科书第153页练习1、2

练习1口答完成;练习2采用大组竞赛的形式进行,其中(1)(4)由两个大组完成,(2)(3)由另两个大组完成.

注:让学生通过巩固练习,达成本节课的基本学习目标,并通过丰富的活动形式,激发学习兴趣,培养竞争意识和集体荣誉感.

解释

你能根据下面的两个图形解释平方差公式吗?

多媒体动画演示图形的变换过程,体会过程中不变的量,并能用代数恒等式表示.

注:(1)重视公式的几何背景,可以帮助学生运用几何直观理解、解决有关代数问题.

(2)此处将教科书的图15.3-1分解为两个图形,是考虑到学生数与形结合的思想方法掌握的不够熟练;利用两个图形可以清楚变化的过程,便于联想代数的形式.

小结

谈一谈:你这一节课有什么收获?

注:这儿采取的是先由每个学生自己小结,然后由小组代表作答,把教师做小结变成了课堂上人人做小结,有助于学生概括能力、抽象能力、表达能力的提高.同时,由于人人都要做小结,促使学生注意力集中,学习主动性加强.

作业

1.必做题:教科书第156页习题15.2第1题

2.选做题:计算:

(1)x2+(y-x)(y+x)

(2)20082-20xx×20xx

(3)(-0.25x-2y)(-0.25x+2y)

(4)(a+ b)(a- b)-(3a-2b)(3a+2b)

教学后记

平方差公式课件教案 篇5

平方差公式

学习目标:

1、能推导平方差公式,并会用几何图形解释公式;

2、能用平方差公式进行熟练地计算;

3、经历探索平方差公式的推导过程,发展符号感,体会特殊一般特殊的认识规律.

学习重难点:

重点:能用平方差公式进行熟练地计算;

难点:探索平方差公式,并用几何图形解释公式.

学习过程:

一、自主探索

1、计算:(1)(m+2) (m-2) (2)(1+3a) (1-3a)

(3) (x+5y)(x-5y) (4)(y+3z) (y-3z)

2、观察以上算式及其运算结果,你发现了什么规律?再举两例验证你的发现.

3、你能用自己的语言叙述你的发现吗?

4、平方差公式的特征:

(1)、公式左边的两个因式都是二项式。必须是相同的两数的和与差。或者说两 个二项式必须有一项完全相同,另一项只有符号不同。

(2)、公式中的a与b可以是数,也可以换成一个代数式。

二 、试一试

例1、利用平方差公式计算

(1)(5+6x)(5-6x) (2)(x-2y)(x+2y) (3)(-m+n)(-m-n)

例2、利用平方差公式计算

(1)(1)(- x-y)(- x+y) (2)(ab+8)(ab-8) (3)(m+n)(m-n)+3n2

三、合作交流

如图,边长为a的大正方形中有一个边长为b的小正方形.

(1)请表示图中阴影部分的面积.

(2)小颖将阴影部分拼成了一个长方形,这个长方形的长和宽分别是多少?你能表示出它的面积吗? a a b

(3)比较(1)(2)的结果,你能验证平方差公式吗?

四、巩固练习

1、利用平方差公式计算

(1)(a+2)(a-2) (2)(3a+2b)(3a-2b)

(3)(-x+1)(-x-1) (4)(-4k+3)(-4k-3)

2、利用平方差公式计算

(1)803797 (2)398402

3.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示( )

A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以

4.下列多项式的乘法中,可以用平方差公式计算的是( )

A.(a+b)(b+a) B.(-a+b)(a-b)

C.( a+b)(b- a) D.(a2-b)(b2+a)

5.下列计算中,错误的有( )

①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;

③(3-x)(x+3)=x2-9;④(-x+y)(x+y)=-(x-y)(x+y)=-x2-y2.

A.1个 B.2个 C.3个 D.4个

6.若x2-y2=30,且x-y=-5,则x+y的值是( )

A.5 B.6 C.-6 D.-5

7.(-2x+y)(-2x-y)=______.

8.(-3x2+2y2)(______)=9x4-4y4.

9.(a+b-1)(a-b+1)=(_____)2-(_____)2.

10.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.

11.利用平方差公式计算:20 19 .

12.计算:(a+2)(a2+4)(a4+16)(a-2).

五、学习反思

我的收获:

我的疑惑:

六、当堂测试

1、下列多项式乘法中能用平方差公式计算的是( ).

(A)(x+1)(1+x) (B)(1/2b+b)(-b-1/2a) (C)(-a+b)(-a-b) (D)(x2-y)(x+y2)[

2、填空:(1)(x2-2)(x2+2)=

(2)(5x-3y)( )=25x2-9y2

3、计算:

(1)(-2x+3y)(-2x-3y) (2)(a-2)(a+2)(a2+4)

4.利用平方差公式计算

①1003997 ②14 15

七、课外拓展

下列各式哪些能用平方差公式计算?怎样用?

1) (a-b+c)(a-b-c)

2) (a+2b-3)(a-2b+3)

3) (2x+y-z+5)(2x-y+z+5)

4) (a-b+c-d)(-a-b-c-d)

2.2完全平方公式(1)

平方差公式课件教案 篇6

教学目标:

知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。

能力目标:进一步培养学生分析、归纳和探索能力。

情感目标:培养学生数形结合的思想。

教学重难点:公式的应用及推广。

教学过程:

一、复习提问:

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。

讲评要点:

沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,

这样裁开后才能重新拼成一个矩形。

(3)比较(1)(2)的结果,你能验证平方差公式吗?

学生讨论,自己得出结果

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

3.判断正误:

(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)

二、新课:

运用平方差公式计算:

(1)102×98;(2)(y+2)(y2)(y2+4).

填空:

(1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();

思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?

平方差公式课件教案 篇7

学习目标:

1、能说出有序数对的定义。

2、能用有序数对表示实际生活中物体的位置。

学习重点:用有序数对表示位置。

学习难点:用有序数对表示位置。

学习过程:

自学过程: (一)、自学知识清单

1、教材64页,在图7.1—1中找出参加数学问题讨论的同学。

小组内交流一下,看一看你们找的位置相同吗?

思考:(2,4)和(4,2)在同一位置吗?为什么?

2、请回答教材65页:思考题。

3、我们把这种有顺序的______个数a与b组成的_______叫做_______,记作( , )。

(二)、自学反馈

练习1、利用________________,可以准确地表示出一个位置,

如电影院的座号,“3排2号”、表示为(3,2),则“2排3号”可以表示为 。

练习2、如图(1)所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为A(3,4),则B,C,D表示为B( , ),C( , )

D( , )

练习3、完成课本第65页的练习。

练习4、用有序数对表示物体位置时,(3,2)与(2,3)表示的位置相同吗?请结合下面图形加以说明.

练习5、如图所示,A的位置为(2,6),小明从A出发,经

(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经

(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?

平方差公式课件教案 篇8

平方差公式是多项式乘法运算中一个重要的公式,是特殊的多项式与多项式相乘的一种简便计算。通过复习多项式乘以多项式的计算导入新课,为探究新知识奠定基础。在重难点处设计问题:“观察以上3个算式的特点和运算结果的特点,对比等号两边代数式的结构,你发现了什么?”让学生发现规律并尝试运用自己的语言来描述。问题提出后,学生能积极进行分组讨论、交流,各组小组长阐述自己小组讨论的结果。大多数的学生能找出规律,说出大概意思,但是无法用精准的语言完整的描述出来,语言表达无条理、含糊。针对这种情况,在以后的课堂教学过程中要注意加强对学生的逻辑思维能力和语言表达能力的培养。最后经过师生的共同努力,得出了平方差公式以及公式的特征。

在例题展示环节中,我通过2道例题的运算,训练学生正确应用公式进行计算,体会公式在简化运算中的作用。实践练习的设计,使学生从不同角度认识平方差公式,进一步加强学生对公式的理解。在运用公式时,学生基本掌握运用平方差公式的步骤:首先要判断算式是否符合平方差公式特征,然后再寻找算式中的a,b项,最后运用平方差公式运算。拓展延伸环节中,学生通过寻找算式中的a,b项,慢慢发现a,b项不仅可以代表数,也可以代表单项式、多项式等代数式,这样设计可以进一步深化学生对字母含义的理解。在学生独立完成练习和堂测中,经过巡视,我发现近三分之一的学生对较复杂的多项式不能准确找出a,b项,特别是b项代表多项式时,负数去括号时出错较多。

最后通过设计递进式的问题串,引导学生自己一步步总结出本节课所学的知识内容,从而培养他们的归纳总结和语言表达能力。

本节课采用学习小组讨论、交流的学习方式,让学优生带动学困生,整体教学效果良好,学生基本掌握平方差公式的运用,对于较复杂的a、b项的运算,在自习课上将加强练习。

平方差公式课件教案 篇9

教学目的

进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异.

教学重点和难点:公式的应用及推广.

教学过程:

一、复习提问

1.(1)用较简单的代数式表示下图纸片的面积.

(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.

讲评要点:

沿hd、gd裁开均可,但一定要让学生在裁开之前知道

hd=bc=gd=fe=a-b,

这样裁开后才能重新拼成一个矩形.希望推出公式:

a2-b2=(a+b)(a-b)

2.(1)叙述平方差公式的数学表达式及文字表达式;

(2)试比较公式的两种表达式在应用上的差异.

说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.

依照公式的文字表达式可写出下面两个正确的式子:

经对比,可以让人们体会到公式的文字表达式抽象、准确、概括.因而也就“欠”明确(如结果不知是谁与谁的平方差).故在使用平方差公式时,要全面理解公式的实质,灵活运用公式的两种表达式,比如用文字公式判断一个题目能否使用平方差公式,用数学公式确定公式中的a与b,这样才能使自己的计算即准确又灵活.

3.判断正误:

(1)(4x+3b)(4x-3b)=4x2-3b2;(×)(2)(4x+3b)(4x-3b)=16x2-9;(×)

(3)(4x+3b)(4x-3b)=4x2+9b2;(×)(4)(4x+3b)(4x-3b)=4x2-9b2;(×)

二、新课

例1 运用平方差公式计算:

(1)102×98; (2)(y+2)(y-2)(y2+4).

解:(1)102×98 (2)(y+2)(y-2)(y2+4)

=(100+2)(100-2) =(y2-4)(y2+4)

=1002-22=10000-4 =(y2)2-42=y4-16.

=9996;

2.运用平方差公式计算:

(1)103×97; (2)(x+3)(x-3)(x2+9);

(3)59.8×60.2; (4)(x- )(x2+ )(x+ ).

公差教案


编辑选取了一篇极具参考价值的“公差教案”。教案课件是老师教学工作的起始环节,每天老师都需要写自己的教案课件。 教案和课件的优化是提升课堂教学质量的重要途径。希望这些知识能够对你有所启示!

公差教案 篇1


公差是机械制造工艺中不可或缺的一个重要环节,它关乎着产品的质量和精度。为了帮助学生更好地理解和掌握公差的概念和应用,制定一份生动、详细的公差教案是非常必要的。下面我将具体介绍这份公差教案的内容和教学方法。


一、教学内容


1. 公差的概念和基本原理


- 公差的定义和分类


- 公差的作用和重要性


- 公差的基本原理及计算方法


2. 公差的标注及表示方法


- 公差的标准和规范


- 公差的表示符号和线条图示


3. 公差的影响因素和控制方法


- 材料性能对公差的影响


- 制造工艺对公差的控制


- 设计参数对公差的影响


4. 公差的测量和检验方法


- 公差的测量工具和设备


- 公差的检验方法和评定标准


二、教学方法


1. 理论讲解结合实例分析


在教学过程中,通过简洁清晰的理论讲解,介绍公差的概念和基本原理。同时,通过实际产品的案例分析,让学生了解和感受公差对产品质量的重要性和影响。


2. 互动讨论和思维拓展


在课堂上,引导学生进行互动讨论,激发学生思考公差的标注和表示方法。通过示范和实践,培养学生对公差标准和规范的熟悉和理解。同时,在教学中提出一些问题和挑战,引导学生进行思维拓展和创新。


3. 实验演示和操作实践


制定实验计划,安排实验演示和操作实践环节,让学生亲自参与到公差测量和检验的实际操作中。通过实验的观察和结果分析,帮助学生更好地理解公差的测量原理和方法。


4. 小组合作和成果展示


在教学中,组织学生分成小组,开展小组合作和讨论。通过小组合作,引导学生探讨公差的影响因素和控制方法,以及相关实际应用案例。要求每个小组进行成果展示和分享,以促进学生的主动学习和思维能力的提升。


三、教学评估


1. 平时作业和练习


在课堂之外,布置一些公差相关的作业和练习,帮助学生巩固所学知识和提升解题能力。定期批改作业,及时纠正学生的错误,并给予及时的反馈和指导。


2. 实验报告和演示评估


对于实验演示和操作实践,要求学生书写实验报告,并进行演示评估。通过对实验报告的评分和演示评估的分析,对学生的实际操作能力和理论掌握情况进行评估。


3. 课堂参与和讨论表现


课堂上,积极参与互动讨论和问题解答的学生将会得到额外的加分和表彰。通过观察学生的课堂参与和讨论表现,评估学生对公差教学内容的理解和掌握程度。


四、教学资料和资源


1. 教材和参考书


选择教材和参考书,结合实际教学情况,进行合理的教学内容选择和编排。在推荐的教材和参考书中,选择相关章节作为教学的理论基础。


2. 实验设备和测量工具


确保实验室中有必要的测量设备和实验工具,供学生使用。探索并引进先进的测量设备和技术,提高学生的实验操作能力和测量精度。


3. 多媒体教学辅助


利用多媒体技术,辅助教学过程中对公差的概念和原理进行图示和示意。利用多媒体资源,提供丰富的实例和案例,让学生更好地理解和应用公差知识。


通过以上的教学内容、方法和评估方式,这份公差教案旨在帮助学生深入理解和掌握公差的概念、应用和计算方法。通过教师的指导和学生的学习努力,相信学生们能够在公差教学中取得优秀的成绩,并在实际工作中灵活应用所学知识,提高产品的质量和精度。

公差教案 篇2

公差课件讲解:从概念到应用

公差,是机械工程中一种非常重要的概念,它是指设计中规定的允许误差范围,用于保证零件的标准化和可互换性。为了更好地解释公差的概念和应用,让我们一起来了解一下“公差课件”。

一、公差的概念和意义

在机械工程中,公差的定义是指,在制造和加工过程中,零件与零件之间或零件与基准之间允许存在的误差范围。公差可以看作是一种容差,是用来保证生产的一致性和可靠性,提高生产效率的重要手段。

公差的应用非常广泛,它与我们的日常生活息息相关。例如汽车、飞机、电子设备等机械制造领域,公差的应用就与产品的精度、性能、寿命等密切相关。

二、公差课件的制作

公差课件是一种介绍公差相关知识和应用的教学文档,其制作需要遵循一定的规则和程序。接下来,我们将从公差课件的目的、内容和步骤等方面来详细介绍一下公差课件的制作。

1.公差课件的目的

公差课件的主要目的是让学生们了解公差的概念、种类、规定和应用,学会如何查阅和使用公差手册,掌握公差计算和绘图的方法。

2.公差课件的内容

公差课件的内容应该包括以下几个方面:

(1)公差的概念和意义

(2)公差的种类和表示方法

(3)公差的规定和检验方法

(4)公差的计算和绘图方法

(5)公差手册的使用及实例分析等

3.公差课件的步骤

制作公差课件的步骤可以按照如下方式进行:

(1)确定公差课件的主题和范围

(2)收集公差相关的资料和文献

(3)按照主题、内容和顺序来编写PPT或Word文档

(4)根据需要,加入图片、图表、案例等辅助材料

(5)制作完成后进行样式排版等美化处理

三、公差的应用举例

公差的应用非常广泛,下面我们以汽车零件为例来说明一下公差的应用。

在汽车制造过程中,零部件之间必须具备互换性,因此需要对零部件进行标准化处理。以传动轴销轴与轴承座的配合为例,假设传动轴销轴的半径为20mm,要求公差等级为IT7,轴承座的孔径直径为21mm,要求公差等级为H7,那么这两个零部件的配合公差为:

上限值=20mm + 0.0215mm = 20.0215mm

下限值=20mm - 0.0105mm = 19.9895mm

其中,0.0215mm和0.0105mm分别是传动轴销轴和轴承座孔径直径的最大允许差值。这样,就能够保证传动轴销轴和轴承座之间具有一定的间隙,从而实现稳定而可靠的工作。

以上就是关于公差课件的详细介绍,相信大家已经对公差的概念、应用和制作方法等有了更深入的了解。公差作为机械制造的一项重要技术,将继续在未来的发展中发挥巨大的作用,为各行各业的发展注入源源不断的动力。

公差教案 篇3


公差是工程设计中不可或缺的一个重要概念,它用于描述零件尺寸的允许范围。准确的公差设计可以确保零件的互换性和装配性,提高产品的质量和可靠性。本文将详细介绍公差教案的内容,旨在帮助读者深入了解公差的重要性和应用。


我们来了解公差的定义。公差是指在设计图纸上规定的允许偏差范围,它涉及到零件的尺寸、形状和位置等方面。公差的设计需要考虑到最大材料条件和最小材料条件,确保零件在不同情况下仍能够正常工作。公差是确定零件之间互换性和装配性的基础,对于设计师和工程师来说具有极大的重要性。


我们将介绍公差教案的主要内容和步骤。首先是公差的基本概念和原理,包括公差的分类和符号表示方法。在教案中,应包含对公差系统和公差链的详细解释,让学生了解公差的层次结构和影响关系。还需介绍公差设计的基本原则和方法,如最大材料原则、最佳公差配对原则和公差预算法等。通过实例演示和计算练习,学生能够更好地掌握公差设计的技巧和要点。


公差教案还应包含公差分析和公差控制的内容。公差分析是评估零件装配质量的关键步骤,它可以通过统计方法和计算公差链的传递来确定系统公差和零件偏差的影响。在教案中,应介绍公差分析的基本原理和方法,如公差传递计算、公差敏感度分析和公差优化等。公差控制是确保零件尺寸稳定和一致性的重要手段,包括过程控制和测量检验等方面。学生需要了解公差控制的手段和方法,并学会运用测量工具和设备进行公差检验和控制。


公差教案还应包含实践环节和案例分析。通过实际零件的测量和装配,学生能够更直观地了解公差的应用和影响。案例分析可以帮助学生将理论知识应用到实际问题中,培养解决实际工程问题的能力。教案中可以选取典型的零件和装配件,进行公差设计和分析,让学生亲自实践和体验工程设计的过程。


小编认为,公差教案是公差教学的重要组成部分,它通过系统地介绍公差的概念、原理和应用,帮助学生全面理解公差的重要性和作用。通过教案的学习,学生可以掌握公差设计和分析的基本技巧,为将来的工程设计和制造打下坚实的基础。公差教案的编写需要结合实际情况和教学目标,注重理论与实践的结合,使学生能够真正理解和运用公差技术,提高工程设计的质量和效率。

分式方程教案汇集8篇


老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“分式方程教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!

分式方程教案(篇1)

教学目标

(一)知识与技能

理解分式方程与整式方程的区别,并掌握解分式方程的一般步骤。

(二)过程与方法

通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤,使学生进一步了解数学思想中的"转化"思想。

(三)情感、态度与价值观

培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。

教学重点:探索如何将分式方程转化为整式方程并掌握解分式方程的一般步骤

教学难点 :探索分式方程产生增根的原因。

教学过程

一.创设情境,导入新课:

为帮助四川受灾的人们重建家园,某中学号召同学们自愿捐款。已知第一次捐款总额为20xx元,第二次捐款总额为2150元,第二次捐款人数比第一次多15人,而且两次人均捐款额恰好相等。

根据以上信息你能分别求出两次捐款的人数吗?

若设第一次捐款人数为X人,第二次捐款人数为 ( ) 人。

根据相等关系列方程为( )。

这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们这节课要学习的分式方程。(板书课题)

二.新课学习:

(一).分式方程的定义:

分母中含有未知数的方程叫做分式方程

以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程

反馈练习

(二).探索分式方程的解法

1.回顾整式方程的解法

解方程(解上面练习中的第三题)

师生共同回顾:解整式方程的步骤

(1)去分母,(2)去括号, (3)移项, (4)合并同类项, (5)化未知x的系数为1

2.如何解分式方程呢?

(学生尝试完成,然后集体补充步骤)

解方程:20xx∕X=2150/X+15

解:方程两边同时乘以X(X+15),得

20xx(X+15)=2150X

解这个整式方程,得

x=200

则200+15=215

检验:把x=200代入原方程,

因为左边=10 右边=10

所以左边=右边

所以x=200是原方程的解。

3.归纳解分式方程的步骤

一是去分母,二是解整式方程,三是检验

4.例题解方程:

(生独立完成,师指导)

分式方程的增根:不适合原方程的整式方程的根,叫原方程的增根.

师:解分式方程必须进行检验!

[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗?

[生]最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去。

三.应用升华

四.小结

本节课我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可,我明白了分式方程转化为整式方程为什么会产生增根。

五.布置作业:

本小节课时作业

教学反思

1. 解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

2.对分式方程可能产生增根的原因,要启发学生认真思考和讨论。

分式方程教案(篇2)

各位领导、各位老师:

大家好!

今天我说课的内容是人教八年级数学下册第十六章《分式》第三节第一课时——分式方程.下面我分说教材、说学情、说教法学法、教学过程、教学效果预想五个方面谈谈我对本节课的看法.

一、说教材

1、教材的地位和作用

可化为一元一次方程的分式方程是在学生已熟练地掌握了一元一次方程的解法、分式四则运算等有关知识的基础进行学习的.它既可看成是分式有关知识在解方程中的应用;也可看成是进一步学习研究其它分式方程的基础(可化为一元二次方程的分式方程),因此它有着承前启后的作用.同时学习了分式方程后也为解决实际问题拓宽了路子.

2、教学目标:

根据教材的地位、作用,考虑到学生已有的认知结构心理特征,本着学习知识,培养能力,进行教育,养成好的学习习惯的原则,我确定了如下教学目标:

知识和技能目标:

①、理解分式方程的概念、会解分式方程.

②、掌握解分式方程的验根方法.

过程和方法目标:

经历“实际问题—分式方程—整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.

情感、态度和价值观目标:

①、培养学生乐于探究、合作学习的好习惯.

②、体会探索发现的乐趣,增强学习数学的自信心.

3、教学重点、教学难点

本着新课程标准,在钻研教材的基础上,我确定本节课的重点、难点为:

教学重点:分式方程的解法

教学难点:解分式方程过程中产生增根的原因及如何验根.

二、学情分析

学生是在前面学习分式的意义、分式的混合运算和熟练解一元一次方程的基础上学习本节内容的,同时八年级学生具有丰富的想象力、好奇心和好胜心理.容易开发他们的主观能动性.但对于解分式方程过程中会出现增根,部分同学理解起来较为困难,因此在教学过程中应重点强调如何把分式方程转化为整式方程和解分式方程过程中产生增根的原因及如何验根.

三、教法学法

1、说教法

常言道:教必有法,教无定法.本节内容从实际问题出发引了出分式方程的概念,介绍分式方程的求解方法.再加上数学学科的特点,所以本节课充分利用“教学案”、采用了启发式、引导式教学方法.特别注重"精讲多练 ",真正体现以学生为主体.上新课时采用了启发、引导式的同时,针对学生的回答所出现的一些问题给出及时的纠正,在上课做练习时,除了让尽可能多的学生板演以外,自己还在下面及时的发现学生所出现的问题,比较典型的则全班讲评,个别小问题,个别解决.

2、说学法

“授人以鱼,不如授人以渔”.本节课里我主要指导学生采用了自主探索、合作交流、自我反思的学习方法,使学生积极主动得参与到教学过程,通过合作交流,激发学生的学习兴趣,体现探索的快乐,使学生的主体地位得到充分的发挥.

四、说教学过程

1、回顾旧知

师生在和谐的气愤之下共同回忆以下内容:

(1)大家还记得我们以前学过什么方程吗?

(2)你会解一元一次方程吗?例如:

(3)解二元一次方程组的主要思想是什么?

设计意图:通过以上三个问题让学生投入到方程的世界,也为学生能够自己通过知识的迁移突破本节课的重点做一个铺垫.

2、创设情景、导入新课

出示引言中的问题:

一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用的时间相等,江水的流速为多少?

师生活动:教师提出问题,学生依照第26页的分析,完成填空,根据“两次航行所用时间相等”这一等量关系列出方程.

设计意图:先通过本章引言中的一个行程问题,引导学生从分析入手,列出含未知数的式子表示有关的量,并进一步根据相等关系列出方程,为探索分式方程及分式方程的解法作准备.

3、小组合作、探究新知

(1)方程 与以前所学的方程有何不同?什么叫分式方程?

师生活动:教师提出问题,学生思考、议论后在全班交流.

学生归纳出:该方程的特征是分母中含有未知数.

设计意图:通过观察、比较,培养学生的观察问题和语言表达能力.

(2)如何解分式方程?

师生活动:鼓励学生寻求解决问题的办法,引导学生将分式方程转化为整式方程,学生在解刚才的一元一次方程的基础上自然会想到“去分母”来实现这种转变,求出方程的解,并要求学生验根.

设计意图:怎样解分式方程,这是本节的核心问题,也是本节课的重点,本次活动中用“转化”和“类比”的思想,把待解决的问题,通过转化,化归到已经解决或比较容易的问题中去,最终使问题得到解决.从而突破本节课的重点.

(3)解分式方程 :

(4)思考:

①上面两个方程中,为什么第一个分式方程去分母后所得整式方程的解就是它的解,而第二个不是呢?

②解分式方程时,去分母后所得整式方程的解是原分式方程的解,也可能不是,这是为什么呢?

③如何进行检验呢?有更简单的方法吗?

师生活动:学生独立解决问题,然后提出自己的看法在小组讨论,在学生讨论期间,教师应参与到学生的数学活动中,鼓励学生勇于探索、实践,解释产生这一现象的原因,并懂得在解分式方程时一定要进行验根.

设计意图:这一环节是本节课的难点,此时我设置了一个问题串,降低难度,并且此环节的内容可以说是适度.考虑学生的认知水平,关于增根的过多知识点我大胆舍去,只把目标定于了解解分式方程产生增根的原因和掌握验根的方法,再者通过引导学生进行比较、探究,并进行充分的讨论,最后统一认识,用分式的意义及分式的基本性质解释分式方程可能无解的原因,以及验根的方法,从而突破本节课的难点.

(4)精析例题

出示P28例题

师生活动:教师出示题目,学生独立完成,指名2名学生板演.

设计意图:①例题的作用可以培养学生学以致用的能力、严格的解题规范格式,从而养成良好的学习习惯.

②评价时采用生生评价的方式可以提高学生学习的兴趣,活跃课堂气氛,培养学生严谨的数学思维习惯.

(5)归纳总结解分式方程的步骤

师生活动:学生总结,老师补充点评

设计意图:让学生明确解题步骤,有一个清晰的解题思路,并强调转化思想.

4、练习巩固、深化提高

P29的练习

师生活动:教师出示题目,学生独立完成,指4名学生板演,教师强调步骤,特别是检验.

设计意图:及时巩固所学知识,了解学生学习效果,增强学生应用知识的能力.

5、总结反思、纳入系统

(1)通过本节课的学习,

你学会了哪些知识?

(2)通过本节课的学习,

你想告诉同学们注意什么?

(3)通过本节课的学习,

你获得了哪些学习数学的方法?

师生活动:学生个体小结,小组归纳,集体补充.

设计意图:①让学生以反思的形式回忆本节的学习内容与方法,更有利于学生加深对所学知识的印象,有利于培养学生养成良好的数学学习习惯.

②注重学生间的相互合作,培养学生的合作意识、竞争意识,养成“爱提问、敢质疑、富联想、善总结”的好习惯.

6、作业布置

(1)、必做题:P32第1题

(2)、选做题:P32第2题.

设计意图:考虑学生的个别差异,分层次布置作业,让基础差的学生能够吃饱,基础好的学生吃好,使每位学生都感到学有所获.

7、板书设计

16.3分式方程 三、创设情境 解分式方程二 例一

一、回顾旧知 四、探究新知

二、分式方程概念 解分式方程一 归纳 例二

设计意图:清晰明朗,利于两个分式方程的对比从而分析出现增根的原因.

五、效果预想

数学课程标准指出:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,而动手实践、自主探究与合作交流是学生学习数学的重要方式.本着这一理念,在本课的教学过程中,我严格遵循由感性到理性,将数学知识始终与现实生活中学生熟悉的实际问题相结合,不断提高他们应用数学方法分析问题、解决问题的能力.在重视课本基础知识的基础上,适当进行拓展延伸,培养学生的创新意识,同时根据新课程标准的评价理念,在教学过程中,不仅能够注重学生的参与意识,而且注重学生对待学习的态度是否积极.课堂中也尽量给学生更多的空间、更多展示自我的机会,让学生在和谐的氛围中认识自我、找到自信、体验成功的乐趣.使学生的主体地位得到充分的体现,使教学过程成为一个在发现在创造的认知过程.

以上就是我对本节课的设想,请各位老师提出宝贵意见.

分式方程教案(篇3)

一.教学内容分析:

列分式方程解决应用问题比列一次方程(组)要稍微复杂一点,教学时候要引导学生抓住寻找等量关系,恰当选择设未知数,确定主要等量关系,用含未知数的分式或者整式表示未知量等关键环节,细心分析问题中的数量关系。对于常用的数量关系,虽然学生以前大都接触过,但是在本章的教学中仍然要注意复习、总结,并且抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。此外,教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,注意检验,解释所获得结果的合理性。

本章教科书呈现了大量由具体问题抽象出数量关系的实例,目的是让学生经历观察、归纳、类比、猜想等思维过程,所以,评价应该首先关注学生在这些具体活动中的投入程度——能否积极主动地参与各种活动;其次看学生在这些活动中的思维发展水平——能否独立思考,能否用数学(语言分式分式方程)表达自己的想法,能否反思自己的思维过程,进而发现新的问题。

教科书设置了丰富的实际例子,这些涉及工业、农业、环保、学生实际、教学本身等方面,评价中应该关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并且用分式、分式方程表示,能否表达自己解决问题的过程,能否获得问题的答案,并且检验、解释结果的合理性。

二.重点和难点

教学重点:引导学生从不同角度寻求等量关系是解决实际问题的关键。

难点:引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性。增强学生应用数学的意识。

三.教学方法

本节课采用:课前预习、课中引导分析、合作探究、自我展示等教学方法。这样可以培养学生的良好学习习惯、语言表达与分析问题的能力、思维的缜密性。

四.教学过程

本节课分四部分进行:情境导入、探究新知、应用、小结。

(一)情境导入。首先,我让学生回顾了分式方程及分式方程的解法、步骤,目的是让学生进一步认识分式方程与整式方程的区别、解法的不同,为后面的学习打下基础。其次,应用几幅图片对学生进行思想教育同时顺利引出新课,目的是让学生了解水资源危机培养他们的良好品质。

(二)新知探究。例1、某市为治理水污染。这一例题只给出了情境没有具体的问题,进而让学生去分析题意及各个量间的关系找出等量关系式。然后提出自己想知道的问题,最后我在学生所提问题中选一问题进行解决。(实际功效是多少?)这样给学生的思考留下了很大的空间,也培养了学生的分析问题解决问题的能力,同时也促进了每个学生的发展。在解决问题过程中多采用了学生间的交流合作、独立完成、互帮互助、上板展示的学习方法。教学时我重点引导学生将实际问题转化为数学模型,并且进行解答,解释解的合理性,这样有利于学生养成良好的学习品质。

(三)知识应用。对例一分析解决后选择课本上的例3作为习题这样不仅巩固了新知应用,而且进一步检测了学生的分析、表达、书写等各个方面的能力,增强他们的应用意识。

(四)小结:让学生在组内交流和在班内交流,畅所欲言,这样每个学生都有回顾知识、表现自我的机会;教师补充小结使学生分析、归纳、总结的良好习惯。

五、课堂练习和课后作业

92页做一做作为学生的作业;P94问题解决的EX1—3作为学生课后习题,要求的难度适中,符合学生接受知识的能力和认知能力,可以即使反馈学生对所学知识的理解和把握程度。

六、说板书

我板书了几个等量关系式,让学生板书解题过程,这样有利于把握重点、掌握新知。

分式方程教案(篇4)

一、教学内容分析:

本节“分式方程”是人教版八年级下册第16章第3节的内容,是继一元一次方程,二元一次方程组之后,初中阶段所讲授的又能一种方程的解法。本节课是在继分式的内容及分式的四则混合运算之后所讲述的一个内容,其实际上就是分式与方程的综合。因此本节课可以看作是一个综合课,同时分式方程的解法也是初中阶段的一个重点内容,要求学生必须掌握。

二、学情分析:

在学习本章之前,学生已经分两次学习过整式方程(一元一次方程、二元一次方程组),他们对于整式方程特别是一元一次方程的解法及其基本思路(使方程逐步化为x=a 的形式)已经比较熟悉,而分式方程的未知数在分母中,它的解法比以前学过的方程复杂,需通过转化思想,化分式方程为整式方程。

三、教学目标:

1、明确什么是分式方程?会区分整式方程与分式方程。

2、会解可化为一元一次方程的分式方程。

3、知道分式方程产生增根的原因,并学会如何验根。

四、教学重点:

分式方程的解法。

教学难点:理解分式方程可能产生增根的原因。

五、教学流程

1、忆一忆

(1)什么叫方程?什么叫方程的解?

(2)什么叫分式?

(3)结合具体例子说出解一元一次方程的步骤。

设计意图:

让学生由旧知识的回忆自然引出新知识便于学生理解接受。

2x-(x-1)/3=6 3x/4+(2x+1)/3=0

2、猜一猜

板书课题“分式方程”,让学生猜一猜其概念,结合分式和方程的特点学生易得出:分母中含有未知数的方程叫分式方程。

设计意图:

采用这种形式引入今天的话题,让学生觉得不是在上数学,而象是在拉家常,让学生没有负担,另外,学生在前面的回忆的基础上很容易猜出来分式方程的概念。这样使学生感受到数学的简单,从而树立学好数学的信心。

3、辨一辨

判断下列方程是不是分式方程,并说出为什么?

1/(x-2)=3/x x(x-1)/x=-1 (3-x)/=x/2

2x+(x-1)/5=10 3/x=2/(x-3) (2x+1)/x+3x=1

指出:

分式方程与整式方程的区别(分母中含不含未知数)

设计意图:

学生说出来了分式方程的概念还远远不够,通过这道题使学生更进一步的巩固分式方程的概念。 (x-1)/x=-1这个方程可能学生会有争议,让学生说出自己的意见后,老师可总结,在判断方是否为分式方程时,不能化简,以形式为准。

4、想一想

提出该如何解方程呢?让学生讨论后得出:

通过去分母,方程两边同乘以各分母的最简公分母,回忆最简公分母的定义。

设计意图:

让学生自己去想该如何解,然后老师加以指导,这样会使学生感觉到自己真正是课堂的主人,从而全身心地投入学习。

5、试一试

(1)80/(x+5) (2)1/(x-5)=10/x.x-25

方程两边同乘以 x(x+5)得: 方程两边同乘以(x+5)(x-5)得:

80x=60(x+5) x+5=10

80x=60x+300 x=5

20x=300

x=15

提醒学生检验,对比两个方程发现问题。

设计意图:

通过提醒学生检验,让学生自己发现问题。从而自然引出话题。

6、议一议

分式方程为什么会产生增根?(两边都乘以了一个零因式,但这个根是整式方程的解)所以分式方程的检验代入最简公分母即可,提出,分式方程能不检验吗?通过讨论使学生得出分式方程必须检验,因为分式方程的检验是为了看是不是增根,而不是检验对错,所以必须检验。

7、说一说

老师帮忙总结出解分式方程的一般步骤:

1、程两边都乘最简公分母,约去分母,化为整式方程。

2、解这个整式方程。

3、把整式方程的根代入最简公分母,看它的值是否为零,使最简公分母为零的值是原方程的增根,必须舍去。

可简单记作:

一化二解三检验。

设计意图:

让学生对所学知识上升到一个理论高度。

8、做一做

解方程:

(1)2/(x-3)=3/x (2)x/(x-1)-1=3/(x-1)(x+2)

体验解分式方程的完整过程。

分式方程教案(篇5)

第五章 分式与分式方程

4.分式方程

(三)

总体说明

本节是分式方程的第4小节,共三个课时,这是第三课时,本节课主要让学生经历“实际问题——分式方程模型——求解——解释解的合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识.教学中设置丰富的实例,关注学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题中的数量关系,并用分式方程表示,能否表达自己解决问题的过程.

一、学生起点分析

学生的知识技能基础:前两节课,学生认识了分式方程这样的数学模型,并且学会解分式方程,为本节课用分式方程解决生活中实际问题打下了基础.学生活动经验基础:在本节第一课时学生已经历用分式方程来刻画现实世界问题的过程,也经历了探索解分式方程的过程,获得了一些数学活动经验和体验,同时在以前学习了列一元一次方程、二元一次方程组解应用题,为本节分式方程的应用打下了基础.

二、教学任务分析

学生在学习了分式方程以及分式方程的解法并能熟练地解方程之后,如何将这些技能应用于现实生活当中,也就是将生活中某些问题模型化,本节课安排了《分式方程》的第三课时,旨在培养学生的应用意识和解决实际问题的能力,

本节课的具体教学目标为:

1.通过日常生活中的情境创设,经历探索分式方程应用的过程,会检验根的合理性; 2.经历“实际问题情境——建立分式方程模型——求解——解释解的合理性”的过程,进一步提高学生分析问题和解决问题的能力,增强学生学数学、用数学的意识. 3.通过创设贴近学生生活实际的现实情境,增强学生的应用意识,培养学生对生活的热爱.

三、教学过程分析

本节课设计了6个教学环节:复习回顾——探究新知——小试牛刀——感悟升华——巩固练习——自主小结.

第一环节 复习回顾 活动内容:

1.解分式方程的一般步骤: 2.解方程 x?14?2?1 x?1x?13.列一元一次方程解应用题的一般步骤分哪几步?

活动目的:回顾上节课知识,检查学生掌握情况,复习列一元一次方程解应用题的一般步骤,引出新问题.注意事项:注意学生解分式方程的书写规范,引导学生回忆程解应用题的一般步骤,以及每一步应注意的问题.第二环节 探究新知 活动内容:

例1.某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为万元,第二年为万元.(1)你能找出这一情境的等量关系吗? (2)根据这一情境,你能提出哪些问题?

(3)你能利用方程求出这两年每间房屋的租金各是多少吗?

活动目的:引导学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试,形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.

注意事项:引导学生按“审---设---列---解---验---答”的步骤解决问题.第三环节 小试牛刀 活动内容:

1例2.某市从今年1月1日起调整居民用水价格, 每立方米水费上涨.小丽家去

3年12月份的水费是 15 元,而今7月份的水费则是30 元.已知小丽家今年7月份的用水量比去年12月份的用水量多5m3 ,求该市今年居民用水的价格.

活动目的:引导学生从不同角度寻求等量关系,发展学生分析问题、解决问题的能力,培养学生的应用意识

注意事项:引导学生按“审---设---列---解---验---答”的步骤解决问题.强调验根的必要性.

第四环节 感悟升华 活动内容:

列分式方程解应用题的一般步骤是什么?

活动目的:使学生明确列分式方程解应用题的一般步骤,及每一步应注意的问题.注意事项:让学生类比列一元一次方程解应用题的一般步骤总结出列分式方程解应用题的一般步骤.强调两次验根的重要性.第五环节 巩固练习 活动内容:

1.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,他们所买的科普书比所买的文学书少1 本.这种科普书和这种文学书的价格各是多少?

2.某商店销售一批服装,每件售价150元,可获利25%。求这种服装的成本.3.甲、乙两人练习骑自行车,已知甲每小时比乙多走6千米,甲骑90千米所用的时间和乙骑60千米所用时间相等,求甲、乙每小时各骑多少千米? 活动目的:使学生体会丰富的实例,巩固用分式方程解决实际问题的技巧.

注意事项:要求学生按“审---设---列---解---验---答”的步骤解决问题.强调验根的必要性.

第五环节 自我小结 活动内容: 1.内容小结

今天这节课大家有什么收获?你学到了哪些知识? 2.方法归纳

本节课的学习过程中,你有什么感想?

活动目的:通过学生的回顾与反思,强化学生对利用列分式方程解应用题的理解,发展学生的观察能力和逆向思维能力.

注意事项:引导学生回顾自己的学习过程,畅所欲言,只要有道理教师就应给予肯定,同时提高学生语言组织能力和反思概括能力.

课后作业:完成课本习题

四、教学设计反思

本节课循序渐进,合理设计教学问题系列,有效组织教学活动,既发挥教师的主导作用,又体现学生的主体地位,较好地完成了教学目标.教学中应结合具体的数学内容采用想“问题情境-建立模型-解释、应用与拓展”的模式展开,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义,掌握必要的基础知识与基本技能,发展应用数学知识的意识与能力,增强学好数学的愿望和信心.在教学形式上采用学生口述、互评等多种方法,激活学生的思维,营造良好的课堂氛围.

分式方程教案(篇6)

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

分式方程教案(篇7)

教材分析

本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元一次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,进一步发展学生分析问题和解决问题的能力,培养应用意识,渗透类比转化思想。

学情分析

《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为教学主导,学生是主体作用

我们这学生基础知识较扎实,学生喜欢上数学课,学习数学的兴趣较浓,具有一定探索解决问题的能力,采用的学习方法:1、类比学习的方法。通过与分数的乘除法运算类比得到分式方程的解法。2、探究合作学习。学生互助下进行学习。

教学目标

知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成就感,树立学好数学的自信心。

教学重点和难点

教学重点:解分式方程的基本思路和解法。

教学难点:理解分式方程可能产生增根的原因。

分式方程教案(篇8)

教学目标

1.使学生能分析题目中的等量关系,掌握列分式方程解应用题的方法和步骤,提高学生分析问题和解决问题的`能力;

2.通过列分式方程解应用题,渗透方程的思想方法。

教学重点和难点

重点:列分式方程解应用题.

难点:根据题意,找出等量关系,正确列出方程.

教学过程设计

一、复习

例 解方程:

(1)2x+xx+3=1;(2)15x=2×15 x+12;

(3)2(1x+1x+3)+x-2x+3=1.

解 (1)方程两边都乘以x(3+3),去分母,得

2(x+3)+x2=x2+3x,即2x-3x=-6

所以x=6.

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.

(2)方程两边都乘以x(x+12),约去分母,得

15(x+12)=30x.

解这个整式方程,得

x=12.

检验:当x=12时,x(x+12)=12(12+12)≠0,所以x=12是原分式方程的根.

(3)整理,得

2x+2x+3+x-2x+3=1,即2x+2+x-2 x+3=1,

即2x+xx+3=1.

方程两边都乘以x(x+3),去分母,得

2(x+3)+x2=x(x+3),

即 2x+6+x2=x2+3x,

亦即2x-3x=-6.

解这个整式方程,得x=6.

检验:当x=6时,x(x+3)=6(6+3)≠0,所以x=6是原分式方程的根.

二、新课

例1 一队学生去校外参观,他们出发30分钟时,学校要把一个紧急通知传给带队老师,派一名学生骑车从学校出发,按原路追赶队伍.若骑车的速度是队伍进行速度的2倍,这名学生追上队伍时离学校的距离是15千米,问这名学生从学校出发到追上队伍用了多少时间?

请同学根据题意,找出题目中的等量关系.

答:骑车行进路程=队伍行进路程=15(千米);

骑车的速度=步行速度的2倍;

骑车所用的时间=步行的时间-0.5小时.

请同学依据上述等量关系列出方程.

答案:

方法1设这名学生骑车追上队伍需x小时,依题意列方程为

15x=2×15 x+12.

方法2设步行速度为x千米/时,骑车速度为2x千米/时,依题意列方程为

平方根教案汇集十三篇


本文提供了一些与“平方根教案”相关的有用信息,我们希望它能帮助您更好地享受工作和生活。老师的工作之一是准备教案课件,因此他们每天都会按时按质地编写教案课件。教案的设计需要随时与时俱进。

平方根教案 篇1

2、阅读课本第4页例题1,按例题格式判断下列各数有没有平方根,若有,求其平方根。若没有,说明为什么。

三、学习体会:

本节课你学到哪些知识?哪些地方是我们要注意的?你还有哪些疑惑?

1、检验下面各题中前面的数是不是后面的数的平方根。

(1)±12 , 144 ( ) (2)±0.2 , 0.04 ( )

A、0.09 是 0.3的平方根. B、0.09是0.3的3倍.

C、0.3 是0.09 的平方根. D、0.3不是0.09的平方根.

(1) x=16 (2) x= (3) x=15 (4) 4x=81

思维拓展:

1、一个数的平方等于它本身,这个数是 一个数的平方根等于它本身,这个数是

2、若3a+1没有平方根,那么a一定 。 3、若4a+1的平方根是±5,则a= 。

4、一个数x的平方根等于+1和-3,则= 。x= 。

5、若|a-9|+(b-4)=0,则ab的平方根是 。

6、熟背1至20的平方的结果。

7、分别计算 32 ,34 ,46 ,58 ,512 ,10 的平方根,你能发现开平方后幂的指数有什么变化吗?

平方根教案 篇2

问:

1.625的平方根是多少?这两个平方根的和是多少?

2.-7和7是哪个数的平方根?

3.正数m的平方根怎样表示?

4.下列各数的平方根各是什么?

答:

1.625的平方根是25和-25,这两个平方根的和是0.

2.-7和7是49的平方根.

(2)0的平方根是0.

(5)因为-16<0,所以-16没有平方根.

(6)因为(-4)3=-64<0,所以(-4)3没有平方根.

问:已知正方形的面积等于a,那么它的一条边长等于多少?

用几何图形可以直观地表示算术平方根的意义.如图所示,面积为a(a应是非负

(1)被开方数a表示非负数,即a≥0;

数a的正的平方根.

例1求下列各数的算术平方根:

(4)因为(0.7)2=0.49,所以0.49的算术平方根是0.7,即

问:一个正数a的平方根与这个正数的算术平方根之间有什么关系?

指出:平方根与算术平方根这两个概念之间既有区别又有联系,区别在于正数的

它的算术平方根的相反数.

例2求下列各数的平方根及算术平方根:

(2)因为(±0.09)2=0.0081,所以0.0081的平方根是±0.09,即

问:说明下列各式所表示的意义是什么?分别求出它们的值.

1.下列各式中哪些有意义?哪些无意义?

2.判断下列各题正确与错误,并将错误改正.

2.(1)正确;(2),(3),(4)错误.

(6)正确. (7)正确.

3.(1)±100,100; (2)±2.7,2.7;

平方根和算术平方根是初中代数中的两个重要概念,要全面掌握它,就必须分清它们的区别,认清它们之间的联系.

1.平方根和算术平方根的区别.

(1)定义不同.如果x2=a,那么x叫做a的平方根.

一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.

如果x2=a,并且x≥0,那么x叫做a的算术平方根.

一个正数的算术平方根只有一个,非负数的算术平方根一定是非负数.

(3)平方根等于本身的数是0,算术平方根等于本身的数是0或1.

2.平方根和算术平方根的联系.

(1)二者有着包含关系:平方根中包含算术平方根,算术平方根是平方根中的非负的那一个.

(2)存在条件相同.非负数才有平方根和算术平方根.

(3)零的平方根和零的算术平方根都是零.

1.求下列各式的值:

(4)±70,70; (5)±10-2,10-2.

平方根及算术平方根是两个重要的概念,是全章的教学重点.学生对平方根及算术平方根的概念常常混淆,因此,在教学中引导学生真正理解这两个概念的本质是什么,并能分清它们的区别与联系,这是这两节课的主要教学目标.在教学设计中,力求在以下两方面突出特点:

1.引导学生建立清晰的概念系统,首先在第1课时要求学生正确理解平方根的概念的意义和平方根的表示法;其次在第2课时专门讨论算术平方根的概念及其表示

2.编选了有针对性的、有梯度的、形式多样的课堂练习题,让学生在练习中巩固和加深知识的理解和掌握,促使学生尽快地把新知识纳入到自己原有的认知结构中.

在课堂练习中设计了一组纠正错误的练习题,实践表明,这种课堂练习是引导学生正确认知的一种有效方法.

平方根教案 篇3

1.理解一个数平方根和算术平方根的意义;

2.理解根号的意义,会用根号表示一个数的平方根和算术平方根;

3.通过本节的训练,提高学生的逻辑思维能力;

4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.

1.已知一正方形面积为50平方米,那么它的边长应为多少?

2.已知一个数的平方等于1000,那么这个数是多少?

3.一只容积为0.125立方米的正方体容器,它的棱长应为多少?

这些问题的共同特点是:已知乘方的结果,求底数的`值,如何解决这些问题呢?这就是本节内容所要学习的.下面作一个小练习:填空

1.( )2=9; 2.( )2 =0.25;

3.

5.( )2=0.0081.

学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正.

如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根).

平方根教案 篇4

1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.

1.等边三角形是轴对称图形,它有三条对称轴.

2.等边三角形每一个角相等,都等于60°

3.三个角都相等的三角形是等边三角形.

4.有一个角是60°的等腰三角形是等边三角形.

其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.

1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?

①在边AB、AC上分别截取AD=AE.

②作∠ADE=60°,D、E分别在边AB、AC上.

③过边AB上D点作DE∥BC,交边AC于E点.

2. 已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.

2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?

平方根教案 篇5

学习目标

1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛

2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.

重点难点

同位角、内错角、同旁内角的特征

教学过程

一·导入

1.指出右图中所有的邻补角和对顶角?

2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?

若都不是,请自学课本P6内容后回答它们各是什么关系的角?

二·问题导学

1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。

2. 如图⑶是"直线 , 被直线 所截"形成的图形

(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。

(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。

(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。

3.找出图⑶中所有的同位角、内错角、同旁内角

4.讨论与交流:

(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?

(2)归纳总结同位角、内错角、同旁内角的特征:

同位角:"F" 字型,"同旁同侧"

"三线八角" 内错角:"Z" 字型,"之间两侧"

同旁内角:"U" 字型,"之间同侧"

三·典题训练

例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?

小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;

两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;

自我检测

⒈如图⑷,下列说法不正确的是( )

A、∠1与∠2是同位角 B、∠2与∠3是同位角

C、∠1与∠3是同位角 D、∠1与∠4不是同位角

⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.

⒊如图⑹, 直线DE截AB, AC, 构成八个角:

① 指出图中所有的同位角、内错角、同旁内角.

②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?

⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.

②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)

相交线与平行线练习

课型:复习课: 备课人:徐新齐 审核人:霍红超

一.基础知识填空

1、如图,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如图,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如图,∵∠D=∠DCF(已知)

∴_____//______( )

6、如图,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2题) (第5、6题) (第7题) (第9题)

7、如图,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

二.基础过关题:

1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。

证明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代换 )

∴BD∥CE( )。

2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。

证明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.

平方根教案 篇6

师:请同学们把准备好的两个正方形拿出来,我们一起来看看这个问题(出示幻灯片)

师:(教师下去参与小组活动,由于学生事先预习了,有的同学按书上的虚线操作成功)

生:(很高兴站起来演示,其他学生也一起比划着)。

师:我也给你们演示一下(课件演示)。那你们知道根号2有多大吗?

师:这是一个近似值,受计算器的位数限制只显示了12位,我们一起来看看下面的方法(教师一边写一边说、一边问)

师:(写完后)根号2是个无限不循环小数,有多大?

师:要注意计算器上显示的是近似值,注意每道题目具体的精确度要求,(对答案)。

生1:好像“被开方数越大,它的算术平方根也越大”。

生2:被开方数的小数点每向右移动两位,它的平方根的小数点就向右移动一位。

生3:我也发现了:被开方数的小数点每或向左移动两位,它的平方根的.小数点就或向左移动一位。

师:同学们观察得非常仔细,表达也很清晰。能直接写出根号30的值吗?

师:这里写的很好,50大于49,根号50大于7, 大于21,结果小明说的不对,小丽不能裁出符合要求的纸片。所以我们不能想当然,数学就要用数字说话。

师:(师生一起小结,学生填在课堂练习上)今天我们收获了什么?

平方根教案 篇7

教学目标:

1、在理解的基础上掌握平行四边形的面积计算公式,能正确地计算平行四边形的面积;

2、通过操作、观察、比较,让学生经历平行四边形面积公式的推导过程,发展学生的空间观念,渗透转化的思想方法,培养学生的分析、综合、抽象、概括和解决实际问题的能力。

3、通过数学活动,让学生感受数学学习的乐趣,体会平行四边形面积计算在生活中的作用。

教学重点:

掌握平行四边的面积计算公式,并能正确运用。

教学难点:

把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

教具准备:

课件、平行四边形纸片、剪刀、直尺、三角板等。

学具准备:

2块平行四边形彩色纸片、三角板、直尺、剪刀

教学过程:

师:出示平行四边形,问:这是什么图形?它有什么特征?生指出它的底和高。你能画出它一条底边上的高吗?(在平行四边形图片上画一画,并标出底和高。)

一、情境创设,揭示课题

1、创设故事情境

同学们,喜欢喜羊羊的动画片吗?据说羊村的牧草越来越少,村长决定把草地分给各个羊自已管理和食用。懒羊羊分到的是一块长方形地,喜羊羊分到的是一块平行四边形地,它们认为自已的草地更少,争了起来。同学们想帮它们解决这个问题吗?你们准备怎样解决呢?

2、复习旧知,揭示课题

(1)复习长方形的面积计算方法,口算长方形草地的面积。(板书长方形面积公式:长方形面积=长×宽)

(2)师:你能帮它们求出这块平行四边形草地的面积吗?这节课,我们一起来研究平行四边形面积的计算方法。

二、自主探究,操作交流

1、大胆猜想

师:在学习推导长方形的面积公式时,我们最初使用了什么的方法?(数方格)今天学习计算平行四边形的面积,能不能也用这个方法?

师:请同学们观看大屏幕,用数方格的方法计算平行四边形的面积,不满一格的,都按半格计算。(生看大屏幕,认真数方格)你有什么发现?

(两个图形的面积相等,都是18平方米……) (知识点)

师:同学们继续观察这两个图形,并完成的表格。完成后想一想,我们知道长方形的面积和它的长和宽有关,那么我们猜想一下,平行四边形的面积可能与它的什么有关?

(师出示一个平行四边形纸板,生看图猜测。)

生汇报猜测结果,师随机板书。

师:如果有很大很大一块草地,需要求它的面积,用数方格的方法方便吗?再则刚才数方格时,我们都是把不满一格的当半格去数,这样也不一定准确,还有没有更好的方法呢?

2、操作验证

提示:想一想,如果我们把平行四边形转化成我们过去学过的图形,就可以根据已学过的面积公式计算出它的面积了,转化成什么图形,怎样转化呢?请大家拿出手里的学具试试看。

学生动手剪拼(可以小组合作),并向周围同学说一说是怎样转化的.

(师参与到小组活动中,巡视指导。)

3、汇报交流

师:你是怎样做的呢?谁愿意上来演示并说一说呢?

(学生有的拼成三角形,有的拼成梯形,有的拼成长方形,还有的拼成平行四边形……)

师:同学们插上了想像的翅膀,把平行四边形转化成各种各样的已学过的图形,你们真棒。

师:请同学们观察一下,哪种图形的面积我们懂得计算呢?

生:长方形。

师:怎样剪才能拼成长方形呢?

师:请大家拿起另一个平行四边形纸片,动手把它转化成长方形吧!

生再次操作。

4、发现方法

师:我们已经成功地把平行四边形转化成长方形。请结合刚才的实验过程,动动脑筋想一想这些问题。小组讨论交流。

(电脑显示思考题)

小组讨论交流。

(1)平行四边形转化成长方形,面积变了吗?

(2)方形后的长和宽分别与平行四边形的底和高有什么关系?

(3)能不能根据这些关系,总结出求平行四边形的面积的方法呢?

实物图片展示拼剪过程同时回答上面的讨论题。

学生一边说教师一边板书:长方形面积=长×宽

平行四边形面积=底×高 (知识点)(能力点)

5、回顾公式推导过程

(1)结合课件演示各部分间的相等关系。

(2)指名说说平行四边形面积公式是怎么样推导出来的?

6、学习用字母表示公式。

师:如果平行四边形式形面积用字母S表示,底用a高用h表示,你能用字母表示平行四边形面积公式吗?(指名说说,师板书:s=ah)

7、记忆公式

闭上眼睛记记公式。

如果要求平行四边形的面积,必需要知道哪些条件呢?

8、尝试运用

师:我们发现的这个平行四边形面积的计算公式是不是对任何一个平行四边形都适用呢?请同学们用面积公式帮喜羊羊算一算平行四边形草地的面积,看计算结果与数方格方法求得的面积结果是不是一样?

(出示喜羊羊的草地图)(说明格式要求)学生独立完成。

三、深化运用,加深理解

通过计算,它们两人的草地面积相等吗?(相等)它们终于消除了误会,破涕为笑,齐声说:“计算平行四边形面积原来这么简单,我们也会了。”

1、算出下列平行四边形的面积 (考查点)

课件出示图形

(羊村长看到小羊们的进步很高兴,说:“再出几个选择题考考你们吧。”)

2、选一选。(题目见课件) (考查点、能力点)

(强调:平行四边形的面积=底×底边对应的高)

你有什么结论?(等底等高的两个平行四边形面积相等。)

3、(羊村长说:我老了,你们能帮我算需要多少棵白菜秧苗吗?)

(考查点、能力点)

有一块地近似平行四边形,底是15米,高是10米。这块地的面积约是多少平方米?如果每平方米种8棵白菜,这块地能种多少棵白菜?

四、解决问题,应用拓展

1、小小设计师

羊村小学教学楼前要建造一个面积是24平方米的平行四边形花坛,请你帮它们设计一下(要求它的底和高均为整米数),可以有几种方案?

2、喜羊羊准备在草地的四周围上篱笆,你能帮它算算篱笆长多少米吗?

五、总结全课,提高认识

这节课我们学习了什么知识?是怎么来学会这些知识的?

平方根教案 篇8

一、教材分析

(一)教材的地位与作用

本节内容是人教版七年级下册第六章第一节的第二课时,在此之前,刚学过算术平方根,而平方根这一节内容不仅是为今后学习二次根式、一元二次方程准备知识,而且它完成了数的范围的扩大,从有理数扩充到了实数,同时让代数运算得以了完善,在乘方的基础上引入了开平方运算,因此学好本节知识是学好后续知识的主要纽带,起着承前启后的作用。

(二)教学目标

(1)知识技能使学生理解平方根的概念,了解平方与开平方的关系。学会平方根的`表示法和求非负数的平方根掌握平方根性质。

(2)数学思考通过用类比的方法探寻出平方根的运算及表示方法,并能自我总结出平方根与算术平方根的异同。

(3)解决问题通过学习平方根,培养学生理解概念并用定义解题的能力。

(4)情感态度①发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理。②通过探究活动,增强学生的合作意识,提高学习热情。

(三)教材的重点与难点

本节课的教学重点:平方根的概念及性质。

本节课的教学难点:求一个数的平方根及平方根和算术平方根的联系与区别。

二、教法学法

教法设想采用引导探索法。采用递进练习法。

用类比及引导探索法由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流得出平方根的定义,将定义的应用融入到探究活动中。

学习方法观察猜测交流讨论分析推理归纳总结

三、教学过程

(一)创设情境导入新知

(1)为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为多少?

(2)学校要举行美术作品比赛,小明很高兴,他想裁出一块面积为50平方厘米的正方形画布,画上自己的得意之作参比赛,这块正方形画布的边长应取多少厘米?

采用多媒体播放问题情境,前一个问题很好直接回答,而第二个问题就会使学生产生思维上的困惑,从而引发学生的思考,导入平方根。

(二)启发诱导探索新知

概念:(类比算术平方根的定义)

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根

从学生熟知的乘方运算入手,让其积极参与数学创造活动,初步形成概念。

平方根教案 篇9

1、掌握平方根的概念,明确平方根和算术平方根之间的联系和区别;

2、能用符号正确地表示一个数的平方根,理解开平方运算和乘方运算之间的互逆关系;

3、培养学生的探究能力和归纳问题的能力.

知识重点平方根的概念和求数的平方根。

导入概念如果一个数的平方等于9,这个数是多少?

学生思考并讨论,使学生明白这样的数有两个,它们是3和-3.受前面知识的影响学生可能不易想到-3这个数,这时可提醒学生,这里的这个数可以是负数.注意中括号的作用.

使学生完成课本165页的填表练习.

给出平方根的概念:如果一个数的平方等于a,那么这个数就叫做a的平方根.即:如果=a,那么x叫做a的平方根.

求一个数的平方根的运算,叫做开平方.

例如:3的平方等于9,9的平方根是3,所以平方与开平方互为逆运算.

图10.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.

让学生体验平方和开平方的互逆关系,并根据这个关系说出1,4,9的平方根.

注意:这阶段主要是让学生建立平方根的概念,先不引入平方根的符号,给出的数是完全平方数.

例1:(课本165页的例4)。求下列各数的平方根。

建议教师要规范书写格式。这个思考题是引入平方根概念的切入点,要让学生有充分的时间进行思考和体验.

在等式中求出x的值,为填表做准备.

通过填表中的x的值,进一步加深时“两个互为相反数的平方等于同一个数”的印象,为平方根的引入做准备.

时,为使各次方根的说法协调起见,常采用二次方根的说法.

3表示+3和一3两个数.这种写法学生不太习惯,在以后的教学中宜不断提到。

通过此例使学生明白平方根可以从平方运算中求得,并能规范地表述一个数的平方根.这个例题也为后面探讨平方根的特征做好准备.

深化概念按照平方根的概念,请同学们思考并讨论下列问题:

正数的平方根有什么特点?0的'平方根是多少?负数有平方根吗?

建议:可引导学生通过观察=a中的a和x的取值范围和取值个数得出.

根据上面讨论得出的结果填课本166页的表.

注:学生刚开始接触平方根时,有两点可能不太习惯,一个是正数有两个平方根,即正数进行开平方运算有两个结果,这与学生过去遇到的运算结果惟一的情况有所不同,另

一个是负数没有平方根,即负数不能进行开平方运算,这种某数不能进行某种运算的情况在有理数的加、减、乘、除、乘方五种运算中一般不会遇到(0作除数的情况除外).教学时,可以通过较多实例说明这两点,并在本节以后的教学中继续强化这两点.

引入符号:正数a的算术平方根可用表示;正数a的负的平方根可用-表示.例如……

而对于又该怎样理解呢?这里的x又可取什么样的数呢?通过讨论,使学生对有理数的平方根有一个全面的认识.也是平方根概念的进一步深化.

体验分类思想,巩固平方根概念.

加深对符号意义的理解和对平方根概念的灵活应用.

测试学生对平方根概念的掌握情况.

应用例2下列各数有平方根?如果有,求出它的平方根,如果没有,说明理由。

-64、0,,

如果有要用平方根的符号来表示。

(4),

建议:要让学生明白各式所表示的意义;根据平方关系和平方根概念的格式书写解题格式。平方根和算术平方根的概念是本章重点内容,两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根,因此我们可以利用算术平方根来研究平方根.

思考:-的值是多少?熟练应用平方根的概念,计算有关算式的值,是本课的主要内容。

小结:

1、什么叫做一个数的平方根?

2、正数、0、负数的平方根有什么规律?

3、怎样求出一个数的平方根?数a的平方怎样表示?

布置作业教科书第167页习题10.1第3、4、7、8、11、12题。

2、本课主要是在算术平方根的基础上建立平方根的概念,要以等式=a和已有算术

平方根概念为基础,并使学生明确平方根与算术平方根之间的联系与区别,明确开平方与平方之间的互逆关系,把握了这些平方根的有关概念,正数、零、负数的平方根的规律也就不难掌握了.

2、有关求算式的值的问题,一定要使学生体会到这个算式所表示的具体意义,这样才能使学生在本质上掌握其求法.

平方根教案 篇10

一、教材分析:

1、说课内容:人教版义务教育课程标准实验教材数学八年级上册第十三章《实数》第一节《平方根》第一课时:算术平方根,算术平方根说课稿。

2、 教材的地位与作用

本课教材所处位置是本章的第一节,学生对数的认识要由有理数范围扩大到实数范围,而本课是学习无理数的前提,是学习实数的衔接与过渡,并且是以后学习实数运算的基础,对以后学习物理、化学等知识及实际问题的解决起着举足轻重的作用。

3、 教学重点、难点

教学的重点:算术平方根概念的引入

教学的难点:根据算术平方根的概念正确求出非负数的算术平方根,解决实际问题,

二、 教学目标设计:

知识与技能:1、说出正数a的算数平方根的定义,记住零的算术平方根;

2、会表示一个非负数的算术平方根;

3、知道非负数的算术平方根是非负数;

数学思考:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维;

解决问题:通过学生的活动,体验解决问题方法的多样性,发展形象思维;在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果。

情感态度:通过学习算术平方根,认识数学与人类生活的密切联系;通过探究活动,锻炼克服困难的意志,建立自信心,提高学习热情。

三、教学分析:

1、学情分析:学生已掌握一些完全平方数,能说出一些完全平方数是哪些有理数的平方,同时对乘方运算也有一定的认识。

2. 相应的教法:从一些完全平方数入手,引入概念,设置疑问,动手操作,再根据实践需要,教师从方法上指导师生合作探究、小组合作学习,教案《算术平方根说课稿》。

3. 具体措施:精讲多练,教师担任设计活动、调节气氛、整理归纳的导演作用,学生是表现者、活动者、实践者。运用多媒体提高课堂容量,增加形象感与趣味性。通过声像并茂、动静皆宜的表现形式,生动、形象地展示教学内容,扩大学生视野,有效促进课堂教学的大容量、多信息和高效率,有利于学生开发智能、培养能力和提高素质,将教学引入了一个新的境界。

四、教学过程设计:

1、创设情境 引入新课

结合通过“神州七号载人飞船发射成功”引入新课,从而激发兴趣,增强学生的学习热情。

2、师生互动,学习新知

以已知正方形的'面积,求边长。通过分析问题,引导学生归纳算术平方根的概念。在此基础上师通过“想一想”“试一试”“练一练加深学生对基础知识的理解,突出本课的重点,从而归纳出:负数没有算术平方根,算术平方根具有双重非负性。

3、动手操作 学以致用

从生活中提炼数学问题,引导学生在日常生活中,勤于实践,活学活用,善于用所求的知识解决一些身边的实际问题,体会数学的应用价值,通过拼大正方形的活动体验解决问题方法的多样性,发展形象思维,在探究活动中,学会与人合作,并能与他人交流思维的过程和探究的结果。

4、随堂检测 反思教学

通过小测试,及时检测学生对本课知识的掌握情况,提高学生的竞争意识,同时反思教学,查漏补缺.

5、提出疑问 留下伏笔

培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。

说课综述:本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。本节教学充分发挥远教资源的便利,在例题的设计上、在思考题、拓展练习的编排上,在教学重难点的突破上,合理而有效的使用了远教资源,使数学教学与远教资源的运用形成新的整合模式。整个教学环节层层推进、步步深入,融基础性、灵活性、实践性、开放性于一体,注重调动学生思维的积极性,把知识的形成过程转化为学生质疑、猜想和验证的过程,坚持以学生为中心以操作为重要手段,以感悟为学习的目的,以发现为宗旨,重视学生的自主探索、亲身实践、合作交流学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。

平方根教案 篇11

一、教材分析:

1、教材的地位和作用

本节课题是新人教版义务教育课程教科书七年级·下册·第六章·第二节“平方根”第二课时的内容。是在七年级学习了乘方运算的基础上安排的,是学习实数的准备知识。运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。因此,本节课是有助于了解n次方根的概念,为今后学习根式运算、方程、函数等知识作出了铺垫,提供了知识积累。

2、教学目标

⑴、知识与技能

帮助学生了解平方根的概念,会进行有关平方根的运算;理解算术平方根与平方根的联系和区别。

⑵、教学思考

在具体问题中抽象出平方根的概念,培养学生的抽象概括能力。

⑶、解决问题

通过举例使学生明确平方根是靠它的逆运算平方来进行,发展学生学习数学的能力。

⑷、情感态度与价值观

通过主动参与使学生勇于面对困难并能够解决困难,发展合作交流意识。

3、教学重点、难点与关键:

重点:平方根的概念和性质难点:平方根的概念和表示的理解。

关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

二、学情分析

根据教学中学生身心发展特点,我从学生现有知识基础、学习现状等方面分析。

1、学生的现有基础

在“平方根”的学习中,学生在七年级时已学过了乘方的运算,上节课又学习了算术平方根的运算,初步理解了根号的表示,有助于本节的学习活动进行。

2、学习的现状

此阶段的学生具有很强的好奇心、强烈的“自我”和自我发展的.意识,因此对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

三、说教法与学法

教法:

(1)情境教学法:目的就是使学生尽快“走进课堂”,激发学生的兴趣,引发学生思考.

(2)对比教学法:即把新旧知识,把二次方与平方根的概念,计算过程等对比起来进行教学.即使他们掌握了概念的本质,又完善了学生的知识结构,从而降低了学生的学习难度.

(3)经验交流法:即使学生在独立练习、思考的基础上,学会与人交流,与人合作,经验共享.

学法:学生是学习的主人,我们应该把过程还给学生,让过程与结果并重。新课程也强调学生的学习应在教师的指导下,主动地、富有个性地学习.据此学生的学法我定为小组交流合作法和自主学习法.这样,既能形成组内合作,组间竞争的学习氛围,又能为学生搭建一个展示个人魅力的平台.

四、教学程序:

(一)创设情境,激发兴趣

首先,我动画的形式,用多媒体示出问题情境:

(1)()2=9,()2=9;()2=0.64,()2=0.64.

(2)如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的;

(3)如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的。

总结得出平方根的概念:如果一个数的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫二次方根)。这样的设计,其目的是通过填空,与算术平方根比较引出平方根的概念,沟通二者之间的关系,与乘方相结合,培养学生的逆向思维能力。

(二)合作交流,理解概念

1、填空:

(1)32=(),(-3)2=(),22=(),(-2)2=(),02=()

(2)()2=&

nbsp;9,()2=4,()2=0(3)有没有一个数的平方等于负数的?

2、想一想

(1)正数的平方根有()个,它们互为();(2)0有()个平方根,它是();

(3)负数______平方根(填“有”或“没有”)

(三)综合训练,突出重点

1、出示例3求下例各数的平方根:

(1)64;(2);(3)0.0004;(4)(-25)2;(5)11

2、为了加深对平方根的理解,我出示课本P42页“想一想”:

(1)()2=();()2=();()2=()(2)对于正数a,()2=()

(四)课后小结

(五)作业P47第3和第4题

五、板书设计平方根

平方根概念:……例3:---------------

开平方概念:……解:(板演详细解题过程)……

法则:……

六、设计说明:

(一)、指导思想:

依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学来源于实践,又服务于实践的思想。

(二)、关于教法和学法

采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。(三)、关于教学程序的设计

在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

①注重目标控制,面向全体学生,启发式与探究式教学。

②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

③注重师生间、同学间的互动协作,共同提高。

④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

平方根教案 篇12

平方根是实数的起始课,又是学习实数的第一节课,内容涉及的知识点不多,知识的切入点比较低,而新课程将其建立在以学内容有理数的基础上,加强与前面的知识点的联系。我选择这节课,突出实数与有理数的联系。

针对七年级学生有一定的自学、探索能力小。借助学生学习的优势,脑和手充分动起来。学生间互相探讨,积极性也被充分调动起来。

让学生通过实际例子,体会算术平方根的定义,通过剪正方形得出面积为2的大正方形的边长,从而解决了生活实际问题,让学生体会生活中的数学。

在本节课中,本着以学生为主,突出重点的意图,结合学生的实际情况,在引入算术平方根的定义时,让学生发掘生活中已知面积而求边长的问题,把实际问题抽象成数学问题,通过例题和练习让学生总结,并关注算术平方根的写法格式,为了突破本节课的难点和重点,真正做到以学生为本,抓住课堂45分钟,突出效率教学,我在准备了操作题,让学生更加体会算术平方根的含义,将想和做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。

本节课的不足:1.没有充分利用已有的图形调动学生的积极性,在做面积为2的大正方形时,我没有让学生看书,这样就在我的讲解中度过了,如果让学生先看书然后在动手操作,那样学生的成就感就得到了体现。2.学生的层次不同,对于基础好的就吃不饱,对于C组的同学满足不了他们的学习需求。

建议:把下面的平方根先上,那样在解方程时就不会出现那么多的正负的问题。

平方根教案 篇13

1、了解平方根的概念,会用根号表示一个数的平方根,并了解被开方数的非负性;

2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,进行简单的开平方运算。

1、我们已经学习过哪些运算?它们中互为逆运算的是?

答:加法、减法、乘法、除法、乘方五种运算。加法与减法互逆;乘法与除法互逆。

2、什么叫乘方?什么叫幂?乘方有没有逆运算?完成下面填空。

(-3)2= ( ) ( )2 =

3、左边算式已知底数、指数 求幂 ,右边算式已知幂、指数 求底数

一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也叫做a的二次方根。

即如果X2=a,那么 叫做 的平方根。请按照第3页的举例你再举两个例子说明:

4、观察上面两组算式,归纳一个数的平方根的性质是:

一个正数 有两个平方根,它们互为相反数;

零 有一个平方根,它是零本身;

(2)0.16的平方根是什么?

(3)0的平方根是什么?

一个正数a有两个平方根,它们互为相反数.

正数a的正的平方根,记作“ ”

正数a的负的平方根,记作“ ”

这两个平方根合在一起记作“ ”

如果X2=a,那么X= ,其中符号“ ”读作根号,a叫做被开方数

1、判断下面的说法是否正确:

相关推荐

  • [荐]平方差公式课件教案(集锦10篇) 教师在备课前制定教案课件是一种负责任的表现,他们对于教案课件的要求也比较熟悉。有详细的教学教案能帮助教师深入地理解课程知识的发展方向。如果您需要这方面的帮助,幼儿教师教育网小编为大家整理了《平方差公式课件教案》这篇文章,希望能有所帮助并与身边的朋友分享。...
    2023-07-05 阅读全文
  • 完全平方公式课件汇编 幼儿教师教育网在这里为您搜罗并整理了“完全平方公式课件”的相关资料敬请查看,这可以帮助你解决困惑。为了教学更有顺利,老师会需要提前准备教案课件,本学期又到了写教案课件的时候了。教师要严格按照教案要求进行教学从而增强教学效力。...
    2024-05-30 阅读全文
  • 公差教案 编辑选取了一篇极具参考价值的“公差教案”。教案课件是老师教学工作的起始环节,每天老师都需要写自己的教案课件。 教案和课件的优化是提升课堂教学质量的重要途径。希望这些知识能够对你有所启示!...
    2024-07-27 阅读全文
  • 公司解决方案汇集7篇 我们应该怎样才能撰写一份出色的方案呢?为了无暇完成工作使命,我们得结合实际情况来制定方案。如果您渴望更深入了解“公司解决方案”相关信息,幼儿教师教育网的介绍就在此,值得一读!同时,欢迎一直关注我们的网站,获取更多知识信息!...
    2023-06-28 阅读全文
  • 分式方程教案汇集8篇 老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“分式方程教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!...
    2024-09-22 阅读全文

教师在备课前制定教案课件是一种负责任的表现,他们对于教案课件的要求也比较熟悉。有详细的教学教案能帮助教师深入地理解课程知识的发展方向。如果您需要这方面的帮助,幼儿教师教育网小编为大家整理了《平方差公式课件教案》这篇文章,希望能有所帮助并与身边的朋友分享。...

2023-07-05 阅读全文

幼儿教师教育网在这里为您搜罗并整理了“完全平方公式课件”的相关资料敬请查看,这可以帮助你解决困惑。为了教学更有顺利,老师会需要提前准备教案课件,本学期又到了写教案课件的时候了。教师要严格按照教案要求进行教学从而增强教学效力。...

2024-05-30 阅读全文

编辑选取了一篇极具参考价值的“公差教案”。教案课件是老师教学工作的起始环节,每天老师都需要写自己的教案课件。 教案和课件的优化是提升课堂教学质量的重要途径。希望这些知识能够对你有所启示!...

2024-07-27 阅读全文

我们应该怎样才能撰写一份出色的方案呢?为了无暇完成工作使命,我们得结合实际情况来制定方案。如果您渴望更深入了解“公司解决方案”相关信息,幼儿教师教育网的介绍就在此,值得一读!同时,欢迎一直关注我们的网站,获取更多知识信息!...

2023-06-28 阅读全文

老师会对课本中的主要教学内容整理到教案课件中,所以老师写教案可不能随便对待。教案是评估学生学习效果的有效依据,好的教案课件是怎么写成的?我们听了一场关于“分式方程教案”的演讲让我们思考了很多,经过阅读本页你的认识会更加全面!...

2024-09-22 阅读全文
Baidu
map