幼儿教师教育网,为您提供优质的幼儿相关资讯

初二数学教案

发布时间:2023-05-15 初二数学教案

初二数学教案。

我们为大家精选了与“初二数学教案”相关的十个知识点。教案课件是老师工作当中的一部分,因此我们老师需要认认真真去写。教案编写过程是教育教学质量保证的重要环节。希望能帮助到你的学习和工作!

初二数学教案【篇1】

1.会作 已知角的平分线;

2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;

3.会利用角的平分线的性质进行证明与计算.

在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.

在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问 题的信心,获得解决问题的成功体验 .

三步导学的教学模式;自主探索,合作交流的学习方式.

如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?

请你拿出准备好的角,用你自己的方法画出它的角平分线.

如图是一个平分角 的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,画一条射线AE,AE就是∠DAB的平分线. 你能说明它的道理吗?

初二数学教案【篇2】

一、教学目标

1. 掌握等腰梯形的判定方法.

2. 能够运用等腰梯形的性质和判定进行有关问题的论证和计算,进一步培养学生的分析能力和计算能力.

3. 通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想

二、教法设计

小组讨论,引导发现、练习巩固

三、重点、难点

1.教学重点:等腰梯形判定.

2.教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线).

四、课时安排

1课时

五、教具学具准备

多媒体,小黑板,常用画图工具

六、师生互动活动设计

教师复习引入,学生阅读课本;学生在教师引导下探索等腰梯形的判定,归纳小结梯形转化的常见的辅助线

七、教学步骤

【复习提问】

1.什么样的四边形叫梯形,什么样的梯形是直角梯形、等腰梯形?

2.等腰梯形有哪些性质?它的性质定理是怎样证明的?

3.在研究解决梯形问题时的基本思想和方法是什么?常用的辅助线有哪几种?

我们已经掌握了等腰梯形的性质,那么又如何来判定一个梯形是否是等腰梯形呢?今天我们就共同来研究这个问题.

【引人新课】

等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形.

前面我们用等腰三角形的定理证明了等腰梯形的性质定理,现在我们也可以用等腰三角形的判定定理来证明等腰梯形的判定定理.

例1已知:如图,在梯形 中, , ,求证: .

分析:我们学过“如果一个三角形中有两个角相等,那么它们所对的边相等.”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了.

(引导学生口述证明方法,然后利用投影仪出示三种证明方法)

(1)如图,过点 作 、 ,交 于 ,得 ,所以得 .

又由 得 ,因此可得 .

(2)作高 、 ,通过证 推出 .

(3)分别延长 、 交于点 ,则 与 都是等腰三角形,所以可得 .

(证明过程略).

例3 求证:对角线相等的梯形是等腰梯形.

已知:如图,在梯形 中, , .

求证: .

分析:证明本题的关键是如何利用对角线相等的条件来构造等腰三角形.

在 和 中,已有两边对应相等,别人要能证 ,就可通过证 得到 .

(引导学生说出证明思路,教师板书证明过程)

证明:过点 作 ,交 延长线于 ,得 ,

∴ .

∵ , ∴

∵ , ∴

又∵ 、 ,∴

∴ .

说明:如果 、 交于点 ,那么由 可得 , ,即等腰梯形对角线相交,可以得到以交点为顶点的两个等腰三角形,这个结论虽不能直接引用,但可以为以后解题提供思路.

例4 画一等腰梯形,使它上、下底长分别5cm,高为4cm,并计算这个等腰梯形的周长和面积.

分析:如图,先算出 长,可画等腰三角形 ,然后完成 的画图.

画法:①画 ,使 .

.

②延长 到 使 .

③分别过 、 作 , , 、 交于点 .

四边形 就是所求的等腰梯形.

解:梯形 周长 .

答:梯形周长为26cm,面积为 .

【总结、扩展】

小结:(由学生总结)

(l)等腰梯形的判定方法:①先判定它是梯形②再用“两腰相等”“或同一底上的两个角相等”来判定它是等腰梯形.

(2)梯形的画图:一般先画出有关的三角形,在此基础上再画出有关的平行四边形,最后得到所求图形.(三角形奠基法)

八、布置作业

l.已知:如图,梯形 中, , 、 分别为 、 中点,且 ,求证:梯形 为等腰梯形.

九、板书设计

十、随堂练习

教材P177中l;P179中B组2

初二数学教案【篇3】

教学建议

知识结构:

重点难点分析:

是商的二次根式的性质及利用性质进行二次根式的化简与运算,利用分母有理化化简.商的算术平方根的性质是本节的主线,学生掌握性质在二次根使得化简和运算的运用是关键,从化简与运算由引出初中重要的内容之一分母有理化,分母有理化的理解决定了最简二次根式化简的掌握.

教学难点是二次根式的除法与商的算术平方根的关系及应用.二次根式的除法与乘法既有联系又有区别,强调根式除法结果的一般形式,避免分母上含有根号.由于分母有理化难度和复杂性大,要让学生首先理解分母有理化的意义及计算结果形式.

教法建议:

1. 本节内容是在有积的二次根式性质的基础后学习,因此可以采取学生自主探索学习的模式,通过前一节的复习,让学生通过具体实例再结合积的性质,对比、归纳得到商的二次根式的性质.教师在此过程中给与适当的指导,提出问题让学生有一定的探索方向.

2. 本节内容可以分为三课时,第一课时讨论商的算术平方根的性质,并运用这一性质化简较简单的二次根式(被开方数的分母可以开得尽方的二次根式);第二课时讨论二次根式的除法法则,并运用这一法则进行简单的二次根式的除法运算以及二次根式的乘除混合运算,这一课时运算结果不包括根号出现内出现分式或分数的情况;第三课时讨论分母有理化的概念及方法,并进行二次根式的乘除法运算,把运算结果分母有理化.这样安排使内容由浅入深,各部分相互联系,因此及彼,层层展开.

3. 引导学生思考想一想中的内容,培养学生思维的深刻性,教师组织学生思考、讨论过程中,鼓励学生大胆猜想,积极探索,运用类比、归纳和从特殊到一般的思考方法激发学生创造性的思维.

教学设计示例

一、教学目标

1.掌握商的算术平方根的性质,能利用性质进行二次根式的化简与运算;

2.会进行简单的二次根式的除法运算;

3.使学生掌握分母有理化概念,并能利用分母有理化解决二次根式的化简及近似计算问题;

4. 培养学生利用二次根式的除法公式进行化简与计算的能力;

5. 通过二次根式公式的引入过程,渗透从特殊到一般的归纳方法,提高学生的归纳总结能力;

6. 通过分母有理化的教学,渗透数学的简洁性.

二、教学重点和难点

1.重点:会利用商的算术平方根的性质进行二次根式的化简,会进行简单的二次根式的除法运算,还要使学生掌握二次根式的除法采用分母有理化的方法进行.

2.难点:二次根式的除法与商的算术平方根的关系及应用.

三、教学方法

从特殊到一般总结归纳的方法以及类比的方法,在学习了二次根式乘法的基础上本小节

内容可引导学生自学,进行总结对比.

四、教学手段

利用投影仪.

五、教学过程

(一) 引入新课

学生回忆及得算数平方根和性质: (a0,b0)是用什么样的方法引出的?(上述积的算术平方根的性质是由具体例子引出的.)

学生观察下面的例子,并计算:

由学生总结上面两个式的关系得:

类似地,每个同学再举一个例子,然后由这些特殊的例子,得出:

(二)新课

商的算术平方根.

一般地,有 (a0,b0)

商的算术平方根等于被除式的算术平方根除以除式的算术平方根.

让学生讨论这个式子成立的条件是什么?a0,b0,对于为什么b0,要使学生通过讨论明确,因为b=0时分母为0,没有意义.

引导学生从运算顺序看,等号左边是将非负数a除以正数b求商,再开方求商的算术平方根,等号右边是先分别求被除数、除数的算术平方根,然后再求两个算术平方根的商,根据商的算术平方根的性质可以进行简单的二次根式的化简与运算.

例1 化简:

(1) ; (2) ; (3) ;

解∶(1)

(2)

(3)

说明:如果被开方数是带分数,在运算时,一般先化成假分数;本节根号下的字母均为正数.

例2 化简:

(1) ; (2) ;

解:(1)

(2)

让学生观察例题中分母的特点,然后提出, 的问题怎样解决?

再总结:这一小节开始讲的二次根式的化简,只限于所得结果的式子中分母可以完全开的尽方的情况, 的问题,我们将在今后的学习中解决.

学生讨论本节课所学内容,并进行小结.

(三)小结

1.商的算术平方根的性质.(注意公式成立的条件)

2.会利用商的算术平方根的性质进行简单的二次根式的化简.

(四)练习

1.化简:

(1) ; (2) ; (3) .

2.化简:

(1) ; (2) ; (3)

六、作业

教材P.183习题11.3;A组1.

七、板书设计

初二数学教案【篇4】

重难点分析

本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5. 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

矩形教学设计

教学目标

1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

2.能运用以上性质进行简单的证明和计算。

此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

(让学生初步感知矩形与平行四边形的从属关系。)

演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如Rt△ABC),让学生自己发现斜边上的中线BO与斜线AC的大小关系,然后让学生自己给出如下证明:

证明:在矩形ABCD中,对角线AC、BD相交于点O,AC=BD(矩形的对角线相等)。

,AO=CO

在Rt△ABC中,BO是斜边AC上的中线,且 。

直角三角形斜边上的中线等于斜边的一半。

例题解析

例1:(即课本例1)

说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

如图4.5-4,欲求对角线BD的长,由于BAD=90,AB=4cm,则只要再找出Rt△ABD中一条直角边的长,或一个锐角的度数,再从已知条件AOD=120出发,应用矩形的性质可知,ADB=30,另外,还可以引导学生探究△AOB是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

∵四边形ABCD是矩形,

AC=BD(矩形的对角线相等)。

又 。

OA=BO,△AOB是等腰三角形,

∵AOD=120,AOB=180- 120= 60

AOB是等边三角形。

BO=AB=4cm,

BD=2BO=244cm=8cm。

例2:(补充例题)

已知:如图4.5-5四边形ABCD中,ABC=ADC=90, E是AC的中点,EF平分BED交BD于点F。

(l)猜想:EF与BD具有怎样的关系?

(2)试证明你的猜想。

解:(l)EF垂直平分BD。

(2)证明:∵ABC=90,点E是AC的中点。

(直角三角形的斜边上的中线等于斜边的一半)。

同理: 。

BE=DE。

又∵EF平分BED。

EFBD,BF=DF。Www.YJs21.Com

说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。

课堂练习

1.课本例1后练习题第2题。

2.课本例1后练习题第4题。

小结

1.矩形的定义:

2.归纳总结矩形的性质:

对边平行且相等

四个角都是直角

对角线平行且相等

3.直角三角形斜边上的中线等于斜边的一半。

4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

作业

l.课本习题4.3A组第2题。

2.课本复习题四A组第6、7题。

初二数学教案【篇5】

一、教学目标

1.掌握矩形的定义,知道矩形与平行四边形的关系.

2.掌握矩形的性质定理.

3.使学生能应用矩形定义、性质等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.

4.通过性质的学习,体会矩形的应用美.

二、教法设计

观察、启发、总结、提高,类比探讨,讨论分析,启发式.

三、重点、难点及解决办法

1.教学重点:矩形的性质及其推论.

2.教学难点:矩形的本质属性及性质定理的综合应用.

四、课时安排

1课时

五、教具学具准备

教具(一个活动的平行四边形),投影仪及胶片,常用画图工具

六、师生互动活动设计

教具演示、创设情境,观察猜想,推理论证

七、教学步骤

【复习提问】

什么叫平行四边形?它和四边形有什么区别?

【引入新课】

我们已经知道平行四边形是特殊的四边形,因此平行四边形除具有四边形的性质外,还有它的特殊性质,同样对于平行四边形来说,也有特殊情况即特殊的平行四边形, 堂课我们就来研究一种特殊的平行四边形矩形(写出课题).

【讲解新课】

制一个活动的平行四边形教具,堂上进行演示图,使学生注意观察四边形角的变化,当变到一个角是直角时,指出这时平行四边形是矩形,使学生明确矩形是特殊的平行四边形(特殊之处就在于一个角是直角,深刻理解矩形与平行四边形的联系和区别).

矩形的性质:

既然矩形是一种特殊的平行四边形,就应具有平行四边形性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质.

继续演示教具,当它变成矩形时,学生容易看到它的四个角都是直角;它的对角线也相等(写出这两个结论),指出观察出来的结论不能做为定理,需要证明.引导学生利用平行四边形角的性质证明得出.

矩形性质定理1:矩形的四个角都是直角.

矩形性质定理2:矩形对角线相等.

由矩形性质定理2我们可以得到

推论:直角三角形斜边上的中线等于斜边的一半.

(这实际上是 △的一个重要性质,即 △斜边中点到三顶点的距离相等,它在求线段长或线段部分关系时经常用到)

例1 已知如图1 矩形 的两条对角线相交于点, , ,求矩形对角线的长.(按教材的格式)

(强调这种计算题的解题格式,防止学生离开几何元素之间的关系,而单纯进行代数计算)

【总结、扩展】

1.小结:(用投影打出)

(1)矩形、平行四边形、四边形从属关系如图.

(2)矩形性质.

1.具有平行四边形的所有性质.

2.特有性质:四个角都是直角,对角线相等.

3.思考题:已知如图, 是矩形 对角线交点, 平分 , ,求 的度数

八、布置作业

教材P158中2、5,P195中7.

九、板书设计

十、随堂练习

教材P146中1、2、3、4

初二数学教案【篇6】

一、教学目标

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

二、重点、难点和难点的突破方法:

1、重点:认识中位数、众数这两种数据代表

2、难点:利用中位数、众数分析数据信息做出决策。

3、难点的突破方法:

首先应交待清楚中位数和众数意义和作用:

中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。

教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的`步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。

在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。

三、例习题的意图分析

1、教材P143的例4的意图

(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。

(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)

(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。

(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。

2、教材P145例5的意图

(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。

(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)

(3)、例5也反映了众数是数据代表的一种。

四、课堂引入

严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。

五、例习题的分析

教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。

教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。

初二数学教案【篇7】

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

学生欣赏图片,阅读其中的文字.

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?

学生观察、思想、回答,得出:

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流.

当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.

教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?

4.概括形成邻补角、对顶角概念.

(1)师生共同定义邻补角、对顶角.

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

①邻补角的“邻”就是“相邻”,就是它们有一条“公共边”,“补”就是“互补”,就是这两角的另一条边共同一条直线上.

②邻补角可看成是平角被过它顶点的一条射线分成的两个角.

③邻补角是互补的两个角,互补的两个角也是邻补角?

5.对顶角性质.

(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.

(2)教师把说理过程,规范地板书:

在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.

强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.

(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程.

一、判断题:

1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

【学习目标】:

1.通过探究两个三角形具备三个条件两边及其夹角对应相等,得到 三角形全等的另一判定方法。

2.能初步应用“边角边”条件判定两个三角形全等.

通过上节课的学习,我们已经知道把两根木条的一端用螺栓固定在一起,连结另

两个端点所成的三角形不能唯一确定。

例如,图中ΔABC与ΔAB'C不是全等三角形。

但如果把另两个端点也用螺栓固定在第三根木条上,那么构成的三角形的形状、

大小就完全确定。

现在我们考虑这样的问题:如果将两木条之间的夹角(即∠BAC)大小固定,那么ΔABC能唯一确定吗?

让我们动手做一做:用量角器和刻度尺画ΔABC,使AB=4cm,BC=6cm,∠ABC=60º.将你画出的三角形和其他同学画的三角形 进行比较,它们能互相重合吗?由此你得 到了什么结论?

一般地,有两边和这两边的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)。

如图,若∠ABC=∠A'B'C',AB= A'B',BC=B'C',则ΔABC≌ΔA'B'C'。

例1:如图,为了测出池塘两端A,B的距离,小红在地面上选择了点O,D,C,使OA=OC,OB=OD,且点A,O,C和点B,O,D都在一条直线上。

小红认为只要量出DC的距离,就能知道AB的距离。

你认为正确吗?请说明理由。

1、如图,把两根钢条AA',BB'的中点连在一起,可以做成一个测量工件内槽宽的卡钳,在图中,要测量 工 件内槽宽AB,只要测量什么?为什么?

2、如图,点D,E分别在AC,AB上 . 已知AB=AC,AD=AE,则BD= CE.请说明理由(填空)。

3、如图 ,已知AC=BD,∠CAB=∠DBA.请说明下列结论成立的理由:

(1)ΔABC ≌ ΔBAD;(2)BC=AD,∠C=∠D.

4、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求 证:∠A=∠D.

∴BE+EF=CF+

即 =

在△ABF和△D CE中,

∴△ABF≌△DCE( ).

∴ =

5. 如图,已知:AD∥BC,AD=CB,AF=CE.求证:△AFD≌△CEB.

在△ 和△ 中,

∴△ _≌△ (______).

1. 如图,已知:AD∥BC,AD=CB,AE=CF.求证:∠D=∠B.

【课后反思】通过本节课的学习,我的收获和困惑是:

1、学生的认知基础:学生已学过三角形的内角和定理,以及三角形的边、顶点、内角等概念,并且已初步了解四边形可分成两个三角形来求内角和,这为本节课的学习打下了基础。

因而学生在探索多边形内角和时,便会很容易想到“拼”和“量”和把多边形转化成三角形等方法。

另外,在以往的学习中,学生的动手实践、自主探索及合作探究能力都得到一定的训练,本节将进一步培养学生这些方面的能力。

2、学生的年龄心理特点:八年级的学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。

活泼好动,思维敏捷,表现欲强,但思考问题不全面。

1、 知识与技能目标:

(2)掌握多边形内角和公式。

2、 过程与方法目标:

(1)掌握类比归纳、转化的学习方法;

(2)培养学生说理和简单推理的意识及能力。

3、情感、态度与价值观目标:

让学生经历探索多边形内角和的过程,进一步发展学生的合情推理意识、主动探究的学习习惯;通过实际情景的引入,让学生进一步体会数学与现实生活的紧密联系。

(2)计算多边形的内角和及依据内角和确定多边形边数。

四、方法和手段:

方法:综合运用自主探究、合作交流、问题解决及研究式学习等方法。

手段:本节课采用多媒体与学科教学整和,以增大课堂信息量,加强直观性及趣味性,有利于学生观察、探究能力的提高。

1、在现实生活中,蕴含着丰富的几何图形。

1、那么什么样的图形是三角形呢?怎样的图形叫做四边形呢?

2、多边形的概念:在平面内,由若干条不在同一直线上的线段首尾顺次相连组成的封闭图形,这样的图形叫做多边形

5、三角形、四边形、五边形、… n边形这些图形,从一个顶点出发的对角线的条数分别是几条?

(1)、我们学过的三角形的内角和是多少呢?

(2)、那么四边形的内角和又是多少呢?你是怎么得到的?

的螺帽的内角和有没有计算方法呢?

归纳为以下几种方法:

方法2、过四边形内任意一点与四边形的各顶点连结,把四边形分成三角形

方法3、在四边形的任一边上取一点,与不相邻的各顶点连结,把四边形分成四个三角形。

方法4、在四边形外任取一点,把这点与各顶点连结。

那么对于n边形猜想一下内角和计算公式是什么?

就我们已求出的特殊多边形的内角和,通过公式再求一次是否相符?

初二数学教案【篇8】

教学设计思想:

本节主要学习了平行四边形的几种判定方法,以及平行四边形性质、判定的应用——三角形的中位线定理。通过问题情境引入平行四边形判定的研究,首先通过直观猜测判定的方法,再次通过几何证明来证明它的正确性。充分发挥学生的主观能动性。

教学目标

知识与技能:

1.总结出平行四边形的三种判定方法;

2.应用平行四边形的判定解决实际问题;

3.应用平行四边形的性质与判定得出三角形中位线定理;

4.总结三角形与平行四边形的相互转化,学会基本的添辅助线法。

过程与方法:

1.经历平行四边形判别条件的探索过程,逐步掌握说理的基本方法。

2.经历探究三角形中位线定理的过程,体会转化思想在数学中的重要性。

情感态度价值观:

1.在探究活动中,发展合情推理意识,养成主动探究的习惯;

2.通过探索式证明法开拓思路,发展思维能力;

3.在解决平行四边形问题的过程中,不断渗透转化思想。

教学重难点

重点:1.平行四边形的判别条件;2.应用平行四边形的性质和判定得出三角形中位线定理。

难点:1.灵活应用平行四边形的判别条件;2.合理添加辅助线;3.三角形与平行四边形之间的合理转化。

教学方法

小组讨论、合作探究

课时安排

3课时

教学媒体

课件、

教学过程

第一课时

(一)引入

师:上节课我们已经知道了平行四边形的边、角及对角线所具有的性质,请同学们回忆一下都有哪些?

初二数学教案【篇9】

知识技能

1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。

2、探究线段垂直平分线的性质。

过程方法

1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。

教学重点

1、轴对称的性质。

2、线段垂直平分线的性质。

教学难点体验轴对称的特征。

教学方法和手段多媒体教学

过程教学内容

引入中垂线概念

引出图形对称的性质第一张幻灯片

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。

幻灯片二

1、图中的对称点有哪些?

2、点A和A的连线与直线MN有什么样的关系?

理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

定义:经过线段的中点并且垂直于这条线段,就叫这条线段的垂直平分线,也叫中垂线。

初二数学教案【篇10】

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2. 看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法 例题

1.因式分解的定义

2.提公因式法

Yjs21.Com更多幼儿园教案扩展阅读

初中数学教案


俗话说,磨刀不误砍柴工。幼儿园的老师都想教学工作能使小朋友们学到知识,大部分的教案都是为了让学生的学习效率得到提升,教案有助于老师在之后的上课教学中井然有序的进行。优秀有创意的幼儿园教案要怎样写呢?以下是小编精心收集整理的初中数学教案,带给大家。请收藏并分享给你的朋友们吧!

初中数学教案(篇1)

教材分析

立体图形的翻折问题是高二《代数》(下)中立体几何的一个学习内容,它融会贯通于各种立体几何和几何体中,对学生进一步理解立体图形起着至关重要的作用。立体图形的翻折是从学生生活周围熟悉的物体入手,使学生进一步认识立体图形于平面图形的关系;不仅要让学生了解几何体可由平面图形折叠而成,更重要的是让学生通过观察、思考和自己动手操作、经历和体验图形的变化过程,使学生了解研究立体图形的方法。

教学重点

了解平面图形于折叠后的立体图形之间的关系,找到变化过程中的不变量。

教学难点

转化思想的运用及发散思维的培养。

学生分析

学生在前面已经对一些简单几何体有了一定的认识,对于求解空间角及空间距离已具备了一定的能力,并且在班级中已初步形成合作交流,敢于探索与实践的良好习惯。学生间相互评价、相互提问的互动的气氛较浓。

设计理念

根据教育课程改革的具体目标,结合“注重开放与生成,构建充满生命活力的课堂教学运行体系”的要求,改变课程过于注重知识传授的倾向,强调形成积极生动的学习态度,关注学生的学习兴趣和经验,实施开放式教学,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成、发展与变化。

教学目标

1、使学生掌握翻折问题的解题方法,并会初步应用。

2、培养学生的`动手实践能力。在实践过程中,使学生提高对立体图形的分析能力,并在设疑的同时培养学生的发散思维。

3、通过平面图形与折叠后的立体图形的对比,向学生渗透事物间的变化与联系观点,在解题过程中,使学生理解,将立体图形中的问题化归到平面图形中去解决的转化思想。

教学流程

一、创设问题情境,引导学生观察、设想、导入课题。

1、如图(图略),是一个正方体的展开图,在原正方体中,有下列命题

(1)AB与EF所在直线平行

(2)AB与CD所在直线异面

(3)MN与EF所在直线成60度

(4)MN与CD所在直线互相垂直其中正确命题的序号是

2、引入课题----翻折

二、学生通过直观感知、操作确认等实践活动,加强对图形的认识和感受(引导学生在解题的过程中如何突破难点,从而体现在平面图形中求解一些不变量对于解空间问题的重要性)。

1、给学生一个展示自我的空间和舞台,让学生自己讲解。教师根据学生的讲解进一步提出问题。

(1)线段AE与EF的夹角为什么不是60度呢?

(2)AE与FG所成角呢?

(3)AE与GC所成角呢?

(4)在此正四棱柱上若有一小虫从A点爬到C点最短路径是什么?经过各面呢?

(通过对发散问题的提出培养学生的培养精神及转化的教学思想方法,让学生体会折叠图与展开图的不同应用。)

2、让学生观察电脑演示折叠过程后,再亲自动手折叠,针对问题做出回答。

(1)E、F分别处于G1G2、G2G3的什么位置?

(2)选择哪种摆放方式更利于求解体积呢?

(3)如何求G点到面PEF的距离呢?

(4)PG与面PEF所成角呢?

(5)面GEF与面PEF所成角呢?

(学生会发现这几个问题可在同一个直角三角形中找到答案,然后让学生在折纸中找到这个三角形的位置,既而发现折叠过程中的不变量。)

3、演示MN的运动过程,让学生观察分析解题过程强调证PN垂直AB的困难性。与学生共同品位解出这道20xx高考题的喜悦的同时,引导学生用上题的思路能否更快捷地解出此题呢?

(学生大胆想象,并通过模型制作确认想象结果的正确性,从而开辟一条简捷的翻折思想解题思路。)

三、小结

1、画平面图,并折前图与折后图中的字母尽量保持一致。

2、寻找立体图形中的不变量到平面图形中求解是关键。

3、注意培养转化思想和发散思维。

(通过提问方式引导学生小结本节主要知识及学习活动,养成学习、总结、学习的良好学习习惯,发散自我评价的作用,培养学生的语言表达能力。)

四、课外活动

1、完成课上未解决的问题。

2、对与1题折成正三棱柱结果会怎样?对于2题改变E、F两点位置剪成正三棱柱呢?

(通过课外活动学习本节知识内容,培养学生的发散思维。)

课后反思

本课设计中,有梯度性的先安排三个小题,让学生经历先动手、思考、预习这一学习过程,然后在课堂上给学生一个充分展示自我的空间,并且适时发问的同时帮助学生找到解决方法。归纳总结解翻折问题的技巧和作为解题方法的优越性。在实施开放式教学的过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神以及合作交流的精神和创新意识,将创新的教材、创新的教法与创新的课堂环境有机地结合起来,将学生自主学习与创新意识的培养落到实处。

初中数学教案(篇2)

教学目标

1、使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

2、培养学生观察能力,提高他们分析问题和解决问题的能力;

3、使学生初步养成正确思考问题的良好习惯、

教学重点和难点

一元一次方程解简单的应用题的方法和步骤、

课堂教学过程设计

一、从学生原有的认知结构提出问题

在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

为了回答上述这几个问题,我们来看下面这个例题、

例1 某数的3倍减2等于某数与4的和,求某数、

(首先,用算术方法解,由学生回答,教师板书)

解法1:(4+2)÷(3-1)=3、

答:某数为3、

(其次,用代数方法来解,教师引导,学生口述完成)

解法2:设某数为x,则有3x-2=x+4、

解之,得x=3、

答:某数为3、

纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一、

我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系、因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程、

本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤、

二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

例2 某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?

师生共同分析:

1、本题中给出的已知量和未知量各是什么?

2、已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

3、若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

上述分析过程可列表如下:

解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

x-15%x=42 500,

所以 x=50 000、

答:原来有 50 000千克面粉、

此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

(还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

教师应指出:

(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

(2)例2的解方程过程较为简捷,同学应注意模仿、

依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

(1)仔细审题,透彻理解题意、即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

(2)根据题意找出能够表示应用题全部含义的一个相等关系、(这是关键一步);

(3)根据相等关系,正确列出方程、即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

(4)求出所列方程的解;

(5)检验后明确地、完整地写出答案、这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义、

例3 (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

(仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨、解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误、并严格规范书写格式)

解:设第一小组有x个学生,依题意,得

3x+9=5x-(5-4),

解这个方程: 2x=10,

所以 x=5、

其苹果数为 3× 5+9=24、

答:第一小组有5名同学,共摘苹果24个、

学生板演后,引导学生探讨此题是否可有其他解法,并列出方程、

(设第一小组共摘了x个苹果,则依题意,得 )

三、课堂练习

1、买4本练习本与3支铅笔一共用了1、24元,已知铅笔每支0、12元,问练习本每本多少元?

2、我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元、求1978年末的储蓄存款、

3、某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数、

四、师生共同小结

首先,让学生回答如下问题:

1、本节课学习了哪些内容?

2、列一元一次方程解应用题的方法和步骤是什么?

3、在运用上述方法和步骤时应注意什么?

依据学生的回答情况,教师总结如下:

(1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案、其中第三步是关键;

(2)以上步骤同学应在理解的基础上记忆、

五、作业

1、买3千克苹果,付出10元,找回3角4分、问每千克苹果多少钱?

2、用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

3、某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台、这家工厂前年10月生产电视机多少台?

4、大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉、求每个小箱子里装有洗衣粉多少千克?

5、把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元、求得到一等奖与二等奖的人数

初中数学教案(篇3)

从不同方向看

教学目标

1.通过实验,使学生相信经过大量的重复实验后得到的频率值确实可以作为随机事件每次发生的机会的估计值,体会随机事件中所隐含着的确定性内涵。

2.使学生知道,通过实验的方法,用频率估计机会的大小,必须要求实验是在相同条件下进行的。且在相同条件下,实验次数越多,就越有可能得到较好的估计值,但个人所得的值也并不一定相同。

3.培养学生合作学习的能力,并学会与他人交流思维的过程和结果。

教学重难点

重点:频率与机会的关系。

难点:如何用频率估计机会的大小?教学准备数枚相同的图钉。

教学过程

一、提出问题

上一节课,通过一系列的实验和观察,我们已经知道:实验是估计机会大小的一种方法。我们可以通过实验,观察某事件出现的频率,当频率值逐渐稳定时,这个值就可以作为我们对该事件发生机会的估计。

实际上,在前面的问题中,即使不做实验,也可以设法预先推测出事件发生的机会,为什么还要花大量时间去进行实验呢?

下面让我们看另一类问题:

一枚图钉被抛起后钉尖触地的机会有多大?

二、分组实验

1.两个学生一个小组,一人抛掷,一人记录

每个小组抛掷40次,记录出现钉尖触地的频数

教师负责把各小组的结果登录在黑板上

2.然后把每小组的结果合起来,分别计算抛掷80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出现钉尖触地的频数及频率

3.列出统计表,绘制折线图

4.根据实验结果估计一下钉尖触地的机会是百分之几?

5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验中画的`统计表和折线图。这与你实验的结果相同吗?为什么?

三、深入思考

如果两个小组使用的是两种不同形状的图钉,那么这两种图钉钉尖触地的机会相同吗?

能把两个小组的实验数据合起来进行实验吗?

四、概括小结

从上面的问题可以看出:

1.通过实验的方法用频率估计机会的大小,必须要求实验是在相同条件下进行的。比如,以同样的方式抛掷同一种图钉。

2.在相同的条件下,实验次数越多,就越有可能得到较好的估计值,但每人所得的值也并不一定相同。

五、用心观察

我们已经知道,在相同条件下,实验次数越多,就越有可能得到较好的估计值。那么,总共要做多少次实验才认为得到的结果比较可靠呢?

观察课本第105页表15.2.1和图15.2.2 。

当实验进行到多少次以后,所得频率值就趋于平稳了?

( 小结:实验到频率值较稳定时,结果比较可靠。这个频率值也就可以作为这个事件发生机会的估计值。 )

六、巩固练习

课本第107页练习第1 、 2题。

七、课堂小结

这节课你有什么收获?还有哪些问题需要老师帮你解决的?

注意:通过实验的方法用频率估计机会大小,必须要求实验是在相同条件下进行的。

八、布置作业

1 、课本第108页习题15.2第2题

2 、课本第106页做一做

2 、数字之积为奇数与偶数的机会

初中数学教案(篇4)

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的`实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案(篇5)

①结合你对一元一次方程中的一次的理解,说一说你对一次函数中的“一次”的理解. ②k可以是怎样的数?

③你怎样认识一次函数和正比例函数的关系?

一个常数b的`和即 Y=kx+b 定义:一般地,形

Y=kx+b( k,b 是常数,k≠0 )的函数,叫做一次函数, 当

b=0时,

Y=kx+b即Y=kx,所以说正比例函数是一种特殊的一次函数。

例1、下列函数中,Y是X的一次函数的是( )①Y=X-6②Y=3X③Y=X2④Y=7-X

学生独立

A①②③B①③④C①②④D①②③④

例2、写出下列各题中x与y之间的关系式,并判

解释与应用

断,y是否为x的一次函数?是否为正比例函数?①汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间(时)之间的关系式;②圆的面积y(厘米2)与他的半径x(厘米)之间的关系:③一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度y(厘米)之间的关系式

初中数学教案(篇6)

教学目标:

1、理解切线的判定定理,并学会运用。

2、知道判定切线常用的方法有两种,初步掌握方法的选择。

教学重点:切线的判定定理和切线判定的方法。

教学难点:切线判定定理中所阐述的圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视一.

教学过程:

一、复习提问

【教师】问题1.怎样过直线l上一点P作已知直线的垂线?

问题2.直线和圆有几种位置关系?

问题3.如何判定直线l是⊙O的切线?

启发:(1)直线l和⊙O的公共点有几个?

(2)圆心O到直线L的距离与半径的数量关系 如何?

学生答完后,教师强调(2)是判定直线 l是⊙O的切线的常用方法,即: 定理:圆心O到直线l的距离OA 等于圆的半 (如图1,投影显示)

再启发:若把距离OA理解为 OA⊥l,OA=r;把点A理解为半径在圆上的端点 ,请同学们试将上面定理用新的理解改写成新的命题,此命题就 是这节课要学的“切线的判定定理”(板书课题)

二、引入新课内容

【学生】命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。

证明定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本P60。

定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

定理的证明:已知:直线l经过半径OA的外端点A,直线l⊥OA,

求证:直线l是⊙O的切线

证明:略

定理的符号语言:∵直线l⊥OA,直线l经过半径OA的外端A

∴直线l为⊙O的切线。

是非题:

(1)垂直于圆的半径的直线一定是这个圆的切线。 ( )

(2)过圆的半径的外端的直线一定是这个圆的切线。 ( )

三、例题讲解

例1、已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB。

求证:直线AB是⊙O的切线。

引导学生分析:由于AB过⊙O上的点C,所以连结OC,只要证明AB⊥OC即可。

证明:连结OC.

∵OA=OB,CA=CB,

∴AB⊥OC

又∵直线AB经过半径OC的外端C

∴直线AB是⊙O的切线。

练习1、如图,已知⊙O的半径为R,直线AB经过⊙O上的点A,并且AB=R,∠OBA=45°。求证:直线AB是⊙O的切线。

练习2、如图,已知AB为⊙O的直径,C为⊙O上一点,AD⊥CD于点D,AC平分∠BAD。

求证:CD是⊙O的切线。

例2、如图,已知AB是⊙O的直径,点D在AB的延长线上,且BD=OB,过点D作射线DE,使∠ADE=30°。

求证:DE是⊙O的切线。

思考题:在Rt△ABC中,∠B=90°,∠A的平分线交BC于D,以D为圆心,BD为半径作圆,问⊙D的切线有几条?是哪几条?为什么?

四、小结

1.切线的判定定理。

2.判定一条直线是圆的切线的方法:

①定义:直线和圆有唯一公共点。

②数量关系:直线到圆心的距离等于该圆半径(即d = r)。[

③切线的判定定理:经过半径外端且与这条半径垂直的直线是圆的切线。

3.证明一条直线是圆的切线的辅助线和证法规律。

凡是已知公共点(如:直线经过圆上的点;直线和圆有一个公共点;)往往是"连结"圆心和公共点,证明"垂直"(直线和半径);若不知公共点,则过圆心作一条线段垂直于直线,证明所作的线段等于半径。即已知公共点,“连半径,证垂直”;不知公共点,则“作垂直,证半径”。

五、布置作业:略

《切线的判定》教后体会

本课例《切线的判定》作为市考试院调研课型兼区级研讨课,我以“教师为引导,学生为主体”的二期课改的理念出发,通过学生自我活动得到数学结论作为教学重点,呈现学生真实的思维过程为教学宗旨,进行教学设计,目的在于让学生对知识有一个本质的、有效的理解。本节课切实反映了平时的教学情况,为前来调研和研讨的老师提供了真实的样本。反思本节课,有以下几个成功与不足之处:

成功之处:

一、 教材的二度设计顺应了学生的认知规律

这批学生习惯于单一知识点的学习,即得出一个知识点,必须由浅入深反复进行练习,巩固后方能加以提升与综合,否则就会混淆概念或定理的条件和结论,导致错误,久之便会失去学习数学的兴趣和信心。本教时课本上将切线判定定理和性质定理的导出作为第一课时,两个定理的运用和切线的两种常用的判定方法作为第二课时,学生往往会因第一时间得不到及时的巩固,对定理本质的东西不能很好地理解,在运用时抓不住关键,解题仅仅停留在模仿层次上,接受能力薄弱的学生更是因知识点多不知所措,在云里雾里。二度设计将切线的判定方法作为第一课时,切线的性质定理以及两个定理的综合运用作为第二课时,这样的设计即是对前面所学的“直线与圆相切的判定方法”的复习,又是对后面学习综合运用两个定理,合理选择两种方法判定切线作了铺垫,教学呈现了一个循序渐进、温过知新的过程。从学生的反馈情况判断,教学效果较为理想。

二、重视学生数感的培养呼应了课改的理念

数感类似与语感、乐感、美感,拥有了感觉,知识便会融会贯通,学习就会轻松。拥有数感,不仅会对数学知识反应灵敏,更会在生活中不知不觉运用数学思维方式解决实际问题。本节课中,两个例题由教师诱导,学生发现完成的,而三个习题则完全放手让学生去思考完成,不乏有不会做和做得复杂的学生,但在展示和交流中,撞击出思维的火花,难以忘怀。让学生尝试总结规律,也是对学生能力的培养,在本节课中,辅助线的规律是由学生得出,事实证明,学生有这样的理解、概括和表达能力。通过思考得出正确的结论,这个结论往往是刻骨铭心的,长此以往,对数和形的感觉会越来越好。

不足之处:

一、这节课没有“高潮”,没有让学生特别兴奋激起求知欲的情境,整个教学过程是在一个平静、和谐的氛围中完成的。

二、课的引入太直截了当,脱离不了应试教学的味道。

三、教学风格的定势使所授知识不能很合理地与生活实际相联系,一定程度上阻碍了学生解决实际问题能力的发展。

通过本节课的教学,我深刻感悟到在教学实践中,教师要不断地充实自己,拓宽知识面,努力突破已有的教学形状,适应现代教育,适应现代学生。课堂教学中,敢于实验,舍得放手,尽量培养学生主体意识,问题让学生自己去揭示,方法让学生自己去探索,规律让学生自己去发现,知识让学生自己去获得,教师只提供给学生现实情境、充足的思考时间和活动空间,给学生表现自我的机会和成功的体验,培养学生的自我意识,发挥学生的主体作用,来真正实现《数学课程标准》中提出的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一教学理念。

初中数学教案(篇7)

教学目标

1。进一步掌握有理数的运算法则和运算律;

2。使学生能够熟练地按有理数运算顺序进行混合运算;

3。注意培养学生的运算能力。

教学重点和难点

重点:有理数的混合运算。

难点:准确地掌握有理数的运算顺序和运算中的符号问题。

课堂教学过程设计

一、从学生原有认知结构提出问题

1、计算(五分钟练习:

(5)-252;(6)(-2)3;(7)-7+3-6;(8)(-3)×(-8)×25;

(13)(-616)÷(-28);(14)-100-27;(15)(-1)101;(16)021;

(17)(-2)4;(18)(-4)2;(19)-32;(20)-23;

(24)3.4×104÷(-5)。

2、说一说我们学过的有理数的运算律:

加法交换律:a+b=b+a;

加法结合律:(a+b)+c=a+(b+c);

乘法交换律:ab=ba;

乘法结合律:(ab)c=a(bc);

乘法分配律:a(b+c)=ab+ac.

二、讲授新课

前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

1、在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行。

审题:

(1)运算顺序如何?

(2)符号如何?

说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果。带分数分成整数部分和分数部分时的符号与原带分数的符号相同。

课堂练习

审题:运算顺序如何确定?

注意结果中的负号不能丢。

课堂练习

计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);

2、在没有括号的不同级运算中,先算乘方再算乘除,最后算加减。

例3计算:

(1)(-3)×(-5)2;

(2)[(-3)×(-5)]2;

(3)(-3)2-(-6);

(4)(-4×32)-(-4×3)2。

审题:运算顺序如何?

解:(1)(-3)×(-5)2=(-3)×25=-75。

(2)[(-3)×(-5)]2=(15)2=225。

(3)(-3)2-(-6)=9-(-6)=9+6=15。

(4)(-4×32)-(-4×3)2

=(-4×9)-(-12)2

=-36-144

=-180。

注意:搞清(1),(2)的运算顺序,(1)中先乘方,再相乘,(2)中先计算括号内的,然后再乘方。(3)中先乘方,再相减,(4)中的运算顺序要分清,第一项(-4×32)里,先乘方再相乘,第二项(-4×3)2中,小括号里先相乘,再乘方,最后相减。

课堂练习

计算:

(1)-72;(2)(-7)2;(3)-(-7)2;

(7)(-8÷23)-(-8÷2)3。

例4计算

(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4。

审题:(1)存在哪几级运算?

(2)运算顺序如何确定?

解:(-2)2-(-52)×(-1)5+87÷(-3)×(-1)4

=4-(-25)×(-1)+87÷(-3)×1(先乘方)

=4-25-29(再乘除)

=-50。(最后相加)

注意:(-2)2=4,-52=-25,(-1)5=-1,(-1)4=1。

课堂练习

计算:

(1)-9+5×(-6)-(-4)2÷(-8);

(2)2×(-3)3-4×(-3)+15。

3、在带有括号的运算中,先算小括号,再算中括号,最后算大括号。

课堂练习

计算:

三、小结

教师引导学生一起总结有理数混合运算的规律。

1、先乘方,再乘除,最后加减;

2、同级运算从左到右按顺序运算;

3、若有括号,先小再中最后大,依次计算。

四、作业

1、计算:

2、计算:

(1)-8+4÷(-2);(2)6-(-12)÷(-3);

(3)3·(-4)+(-28)÷7;(4)(-7)(-5)-90÷(-15);

3、计算:

4、计算:

(7)1÷(-1)+0÷4-(-4)(-1);(8)18+32÷(-2)3-(-4)2×5。

5、计算(题中的字母均为自然数):

(1)(-12)2÷(-4)3-2×(-1)2n-1;

(4)[(-2)4+(-4)2·(-1)7]2m·(53+35)。

初中数学教案(篇8)

一、教材分析

同底数幂的乘法这节课要求学生推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题.在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践,自主探索与合作交流的教学理念.通过练习形成良好的应用意识.

同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移.

因此,同底数幂的乘法性质既是有理数幂的乘法的推广, 又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用.

二、教学目标

(一),知识技能

1.理解同知识技能底数幂的乘法法则

2.运用同底数幂的乘法法则解决一些实际问题

(二),能力训练

1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力

2.通过"同底数幂的乘法法则"的推导和应用,使学生领会特殊-----一般-----特殊的认知规律

(三),情感价值

体味科学的思想方法,接受数学情感的熏陶,激发学生探究的兴趣

教学重点: 正确理解同底数幂的乘法法则

教学难点:正确理解和应用同底数幂的乘法法则

教学手段:为了使性质的推导过程更形象和清晰,所以借助多媒体来进行教学.

三、教学方法分析

1.教法分析

根据教学目标,要让学生经历探索性质的过程,因此,在性质的推导过程,采用让学生尝试的教学方法,以问题的形式,引导学生进行思考,探索,再通过交流,讨论,发现性质,使学生的学习过程成为再发现,再创造的过程,使学生在学习的过程中掌握学习与研究的方法,养成良好的学习习惯,从而学会学习,学会思考,学会合作,学会创新;

对于推导出的性质及其语言叙述,则可以一种较轻松而又富有挑战性的方式指导他们理解记忆,在教学方法上采用学生讨论与教师的讲授相结合.而在整个教学中,分层次地渗透了归纳和演绎的数学思想方法,以培养学生养成良好的思维习惯.

2.学法指导

教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此,在教学中要不断指导学生学会学习.

本节课主要是教给学生"动手做,动脑想,多合作,大胆猜,会验证"

的研讨式学习方法.这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体.以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容.

四、教学过程

一.创设情景 提出问题

运用多媒体投影引例,引导学生观察由问题而得到式子特点:105×107=

二.探索交流 发现新知

(一),提出新任务:

思考:an 表示的意义是什么 其中a,n,an分 别叫做什么

问题:1.25表示什么

2.10×10×10×10×10 可以写成什么形式

思考:1式子103×102的意义是什么

2这个式子中的两个因式有何特点

3.a3×a2=

过程中注意了解学生对幂的意义的理解程度,要求学生说明每一步的理由.

思考:请同学们观察下面各题左右两边,底数,指数 有什么关系

103 ×102 = 10( ) 23 ×22 = 2( ) a3× a2 = a( )

(二),提高任务难度:

引导学生观察计算前后底数和指数的关系,并鼓励其运用自己的语言加以描述.

猜想:am · an= (当m,n都是正整数)

(三),提出挑战:能否用一个比较简洁的式子概括出你所发现的规律

(四),提出更高挑战:要求学生从幂的意义这个角度加以解释,说明,验证它的正确性.

然后要求学生按步骤独立思考和探索:

1.比一比:识记运算性质

2.回想一下你是用什么办法记住的 用这个办法能否持久 你能否提出一个更有建设性的改进措施

猜想:am · an= (当m,n都是正整数)

对运算性质的剖析 条件:①乘法 ②同底数幂

结果:①底数不变 ②指数相加 (目的是为了化解难点)

3.再识记.在理解的基础上,结合性质的特点和语言 叙述,有目的地提取记忆.

4.提问:"你认为这个性质的应用,应特别注意什么 "

(五),应用练习 促进深化

五、提炼小结 完善结构

"通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法 "引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败.

六、布置作业 延伸学习

初中数学教案(篇9)

初中数学分层教学的理论与实践

天山六中裴焕民

一、分层教学的含义

分层教学是指教师在学生知识基础、智力因素存在明显差异的情况下,有区别地设计教学环节进行教学,遵循因材施教的原则,有针对性地实施对不同类别学生的学习指导,不仅根据学生的不同选择不同的教法、布置作业,还因材施“助”、因材施“改”、因材施“教”,使每个学生都能在原有的基础上得以发展,从而达到不同类别的教学目标的一种教学方法。

分层教学是“着眼于与学生的可持续性的、良性的发展”的教育观念下的一种教学实施策略。所谓分层教学(同班、同年级分层次教学)就是教师在教授同一教学内容时,对同一个班内不同知识水平和接受能力的优、中、差生以相应的三个层次的教学深度和广度进行合讲分练,做到课堂教学有的放矢,区别对待,使每个学生都在自己原来的基础上学有所得,思有所进,在不同程度上有所提高,同步发展。教师的教学方法应从最低点起步,分类指导,逐步推进,做到“分合”有序,动静结合,并分层设计练习,分层设计课堂,分层布置作业,引导学生全员参与,各得进步。

二、分层教学必要性分析

1、教学现状呼唤分层教学的实施

义务教育的实施使小学毕业生全部升入初中学习,这样,在同一班里,学生的知识、能力参差不齐。但是,应试教育留下的种种弊端抑制了各层次的学生的学习积极性和兴趣,整齐划一的教学要求,忽视了学生之间的差异。为了使教育面向全体学生,减轻部分学生过重的负担,使他们在原有的基础上有所提高,全面提高教学质量,又要使有特长的学生得到更进一步的发展。因此必须实施因材施教,根据不同的学生的具体情况,确立不同的教学目标,采取不同的教学方法,使其个性得到充分发展,为社会培养各种层次的有用之人。

2、新课程改革呼唤分层教学的实施

数学课程改革的核心是课程的实施,而教学是课程实施的基本途径。课程改革归根到底是要转变教师的传统教学观念:包括教学方式的转变——从“教”到

“引”;知识技能掌握理念的转变——从“满堂灌”、“书山题海”到“在亲身经历中体会、理解、掌握知识技能”,强调自我的情感体验;教材观的转变——从“教教材”到“用教材”,教材变成我们引导学生探究知识的工具之一;评价机制的转变——从“唯分数论”到“适合学生自身特点的发展”,这是实施分层教学的原动力,但也是现今新课程改革的一个难点。

在新课改中实施分层教学法的目的是逐步树立学困生学习的信心,激发中等生的学习潜力,扩大优生的学习面。为了适应当前素质教育的需要,我们要采用针对性的矫正和帮助,进行分层教学,分类指导,及时反馈,从中探索出一条教学改革的新路子。

3、学生个体差异的客观存在

心理学的研究结果表明:学生的学习能力差异是存在的,特别是学生在数学学习能力方面存在着较大的差异这已是一个不争的事实。造成差异的原因有很多,学生的先天遗传因素及环境、教育条件都有所不同,还有社会因素(即环境、教育条件、科学训练),这些原因是对学生学习能力的形成起着决定性作用,所以学生所表现出的数学能力有明显差异也是正常的。

学生作为一个群体,存在着个体差异

(1)智力差异。每个学生因为遗传基因的不同,智力的差异是不可避免的。有的人聪明;有的人愚钝,有的人形象思维强;有的逻辑思维强;有的人记忆力超人,但推理能力较差;有的人记忆力较差,却推理能力过人。

(2)学习基础差异。不同的学生在小学的数学状况不一样:有的学生数学十分优秀,有的学生数学学习基本还没入门,两极分化相当严重。

(3)学习品质差异。有的学生学习数学十分认真,有一套自己的数学学习方法,学得轻松愉快;而有的学生因为没有入门,数学学得十分艰难,部分学生甚至对数学学习丧失了信心。

4、分层次教学符合因材施教的原则

目前我国大部分省市的数学教学采用的是统一教材、统一课时、统一教参,在学生学习能力存在差异的情况下,在教学过程中往往容易产全“顾中间、丢两头”。如不因材施教,就使部分学生就成了陪读、陪考。数学能力强的学生潜能得不到充分发挥,能力稍差的学生就可能变成了后进生。有研究结果表明:教师、

家庭、社会、学生、学校等方面的因素都有可能是形成后进生的原因,其中有50%的原因是来自教师在教学中的失误。我们的基础教育既要注意确保学生的共性需求,又要顾及学生的个性发展,所以进行分层教育确有必要。

5、分层次教学能够有效推动教学过程的展开

按照教育家达尼洛夫关于教学过程的动力理论之说,认为只有学生学习的可能性与对他们的要求是一致的,才可能推动教学过程的展开,从而加快学习成绩的提高,而这两者的统一关系若被破坏,就会造成学业的不良后果。学生的学习可能是由他们生理和心理的一般发展水平与对某项学习的具体准备状态所决定的,学生学习可能性的构成因素中既有相对稳定的因素,又有易变的因素。相对稳定的因素,决定了学生在一段时间内可能达到的学习水平的范围,决定了学业不良学生要取得学业进步只能是一个渐进的过程;易变的因素,使学生能在:一定的主客观条件下提高或降低自己的实际可能性水平,从而促进或阻碍学习可能性与教学要求之间矛盾的转化,加快学习成绩提高或降低的速度。由此可见,分层次教学是着眼于协调教学要求与学生学习可能性的关系的一种极好的手段,使它们之间能相适应,从而推动教学过程的展开。

三、分层教学研究的目的意义

捷克教育家夸美纽斯在十七世纪提出来的班级授课制以其大大提高教学效率、加强学校工作的计划性和实际社会效益风行了三百多年后,其固有的不利于学生创造能力的培养和因材施教等种种弊端与社会发展对教育的要求的矛盾越来越尖锐起来。随着科学技术的发展,社会日益进步,教育资源和教育需求的增长和变化,班级授课制在我国做出辉煌的贡献后逐步显现出其先天的严重不足。教师在班级授课制下对能力强的学生“吃不饱”,能力欠佳的学生“吃不消”普遍感到力不从心。分层教学在这种情况下应运而生,成为优化单一班级授课制的有利途径。

1.有利于所有学生的提高:分层教学法的实施,避免了部分学生在课堂上完成作业后无所事事,同时,所有学生都体验到学有所成,增强了学习信心。

2.有利于课堂效率的提高:首先,教师事先针对各层学生设计了不同的教学目标与练习,使得处于不同层的学生都能“摘到桃子”,获得成功的喜悦,这极大地优化了教师与学生的关系,从而提高师生合作、交流的效率;其次,教师在

备课时事先估计了在各层中可能出现的问题,并做了充分的准备,使得实际施教更有的放矢、目标明确、针对性强,增大了课堂教学的容量。总之,通过这一教学法,有利于提高课堂教学的'质量和效率。

3.有利于教师全面能力的提升:通过有效地组织好对各层学生的教学,灵活地安排不同的层次策略,极大地锻炼了教师的组织调控与随机应变能力。分层教学本身引出的思考和学生在分层教学中提出来的挑战都有利于教师能力的全面提升。

四、分层教学的理论基础

1、掌握学习理论

布鲁姆提出的“掌握学习理论”主张:“给学生足够的学习时间,同时使他们获得科学的学习方法,通过他们自己的努力,应该都可以掌握学习内容”。“不同学生需要用不同的方法去教,不同学生对不同的教学内容能持久地集中注意力”。为了实现这个目标,就应该采取分层教学的方法。

2、教学最优化理论

巴班斯基的“教学最优化理论”的核心是:教学过程的最优化是选择一种能使教师和学生在花费最少的必要时间和精力的情况下获得最好的教学效果的教学方案并加以实施。分层教学是实现这一目标的有效方式之一。

3、新课标的基本理念

《数学课程标准》提出了一种全新的数学课程理念:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。面向全体学生,体现了义务教育的基础性、普及性和发展性。不仅为数学教学内容的设定指出方向,而且考虑到学生的可持续发展对数学的需求,并为学生学习数学可能产生的差异性留有充分的余地。

五、分层教学实施的指导思想及原则

首先,分层次教学的主体是班级教学为主,按层次教学为辅,层次分得好坏直接影响到“分层次教学”的成功与否。其指导思想是变传统的应试教育为素质教育,是成绩差异的分层,而不是人格的分层。为了不给差生增加心理负担,必须做好分层前的思想工作,了解学生的心理特点,讲情道理:学习成绩的差异是客观存在的,分层次教学的目的不是人为地制造等级,而是采用不同的方法帮助

他们提高学习成绩,让不同成绩的学生最大限度地发挥他们的潜力,以逐步缩小差距,达到班级整体优化。

在对学生进行分层要坚持尊重学生,师生磋商,动态分层的原则。应该向学生宣布分层方案的设计,讲清分层的目的和意义,以统一师生认识;指导每位学生实事求是地估计自己,通过学生自我评估,完全由学生自己自愿选择适应自己的层次;最后,教师根据学生自愿选择的情况进行合理性分析,若有必要,在征得学生同意的基础上作个别调整之后,公布分层结果。这样使部分学生既分到了合适的层次上,又保留了“脸面”,自尊心也不至于受到伤害,也提高了学生学习数学的兴趣。

其次,在分层教学中应注意下列原则的使用:

①水平相近原则:在分层时应将学习状况相近的学生归为“同一层”;

②差别模糊原则:分层是动态的、可变的,有进步的可以“升级”,退步的应“转级”,且分层结果不予公布;

③感受成功原则:在制定各层次教学目标、方法、练习、作业时,应使学生跳一跳,才可摘到苹果为宜,在分层中感受到成功的喜悦;

④零整分合原则:教学内容的合与分,对学生的“放”与“扶”,以及课外的分层辅导都应遵守这个原则;

⑤调节控制原则:由于各层次学生要求不一,因此在课堂上以学、议为主,教师要善于激趣、指导、精讲、引思,调节并控制止好各层次学生的学习,做好分类指导;

⑥积极激励原则:对各层次学生的评价,以纵向性为主。教师通过观察、反馈信息,及时表扬激励,对进步大的学生及时调到高一层次,相对落后的同意转层。从而促进各层学生学习的积极性,使所有学生随时都处于最佳的学习状态。

六、实施分层教学的策略与措施

(一)分层建组

把学生分层编组是实施分层教学、分类指导的基础。学生的分类应遵循“多维性原则、自愿性原则和动态性原则”,教师通过对全班学生平时的数学学习的智能,技能、心理、成绩、在校表现、家庭环境等,并对所获得的数据资料进行综合分析,分类归档。在此基础上,将学生分成好、中、差层次的学习小组,让

初中数学教案(篇10)

一、课题引入

为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

二、课题研究

在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的'数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

三、巩固练习

例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

日期周二周三周四周五

开盘+0.16+0.25+0.78+2.12

收盘-0.23-1.32-0.67-0.65

当日收盘价

试在表中填写周二到周五该股票的收盘价.

思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案(篇11)

初中数学分层次教学案例

【案例主题:】学生参与教学,体现了现代教学理念:活动、合作、自由、民主、创新。

【背景:】我在进行数学七年级上册图形的认识的应用教学时,处理定理时,随着教学过程的深入,很有感想:??

例题:课本p123证明两个角之间的关系,

请同学们总结一下他们可能出现的情况。

【活动过程】师:谁能总结一下判定两个角比较大小的方法?(学生都在紧张的思考中)(突然间,我发现一名平时学习较困难的学生闫家衔这次第一个举起了手,很惊奇,便马上让他发言了。也有了我思想上的一次飞跃。)

生:我认为前面,度量,而刚才第一条,第二条的叠合法。(这时,教室里鸦雀无声,个别同学在讥笑,这位学生顿时有些难堪,想坐下去,我赶紧制止。)

师:很好!那你准备应该怎么做呢?生:嗯,(一下子来劲了):接着这位同学上黑板画了图,写出自己度量的方法和自己的想法。

师:刚才闫家衔同学真的不错,不但提出了新的方法,而且还给出了说理,我和全班同学都为你今天的表现感到非常高兴(教室里响起一片掌声)。要有勇气展示自己,你今天的表现就非常非常地出色,你今后的表现一定会更出色。好,下面我就让我们一同来总结一下菱形的证明方法。

在师生的共同研讨下得出了这些方法。

师:今天的课程内容还有一项,那就是请闫家衔同学谈谈这堂课的感想。

生:??以前我不敢发言,我怕说的不对会被同学们笑话,而今天的他的方法恰好是我前几天才预习过的,所以一下子??我今天才发现不是这样??我今后还会努力发言的??

【理念反思】:从这一个学生的举手发言到说得头头是道的“意外”中,我明白了:学生需要一个能充分展示自我的自由空间,作为老师,我们需要给学生一个自由的民主的氛围,能充分培养学生的自信,使“学困生”也能产生发言的欲望,也能对问题畅所欲言,教师还应能及时捕捉到这一闪光点,给每一位学生都有展示的机会。也就是说要使学生全部积极参与教学,因为它集中体现了现代课程理念:活动、合作、自由、民主、创新。

1、活动、合作是现代课程中的新的理念,只有参与,才能合作创新。

2、民主是现代课程中的重要理念。民主最直接的体现是在课程实施中学生能够平等地参与。没有主动参与,只有被动接受,就没有民主可言。相反,如果没有民主,学生的参与

就不是主动性参与,而是被动的、消极的参与。

3、在提问时,应设计开放性的问题,如:“请你帮助设计一下,有几种方案等问题?这样才没有限制学生的思维,给学生创设一个自由的空间,学生在这个空间中可以按自己的方式展开想象,才能畅所欲言。

4、在课堂上,老师应不只关注“优等生”,而应平等地对待每一个学生,让学困生”和“学优生”同时享有尊严和拥有一份自信。特别是发现到一个学困生在举了手时,应及时给“学困生”展示的机会,让他们发言,学生在发言中,虽然有时不能把问题完全解决,老师也要充分的肯定这个学生的成绩和能够大胆发言的勇气。

初中数学二元一次方程组教案


作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学二元一次方程组教案 篇1

二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。

由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。

由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:

从而实现问题的解决。

课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。

初中数学二元一次方程组教案 篇2

【教学目标】

知识目标:

①使学生初步理解二元一次方程与一次函数的关系。

②能根据一次函数的图象求二元一次方程组的近似解。

能力目标:

通过学生的思考和操作,力图提示出方程与图象之间的关系,引入二元一次方程组图象解法,同时培养学生初步的数形结合的意识和能力。

情感目标:

通过学生的自主探索,提示出方程和图象之间的对应关系,加强新旧知识的联系,培养学生的创新意识,激发学生学习数学的兴趣。

重点要求:

1、二元一次方程和一次函数的关系。

2、能根据一次函数的图象求二元一次方程组的近似解。

难点突破:

经历观察、思考、操作、探究、交流等数学活动,培养学生抽象思维能力,并体会方程和函数之间的对应关系,即数形结合思想。

【教学过程】

一、学前先思

师:请同学们思考,我们已经学过的二元一次方程组的解法有哪些?

生:代入消元法、加减消元法。

师:请你猜测还有其他的解法吗?

生:(小声议论,有人提出图象解法)

师:看来的同学似乎已经提前做了预习工作,很好!那么对于课题“二元一次方程组的图象解法”,你想提什么问题?

生:二元一次方程组怎么会有图象?它的图象应该怎样画?

生:二元一次方程组的图象解法怎么做?

师:同学们都问得很好!那你有喜欢的二元一次方程组吗?

生:(比较害羞)

师:看来大家比较害羞,那么请大家把各自喜欢的二元一次方程组留在心里。让我们带着同学们提出的问题从二元一次方程开始今天的学习。

二、探究导学

题目:

判断上面几组解中哪些是二元一次方程的解?

生:和不是,其余各组均是方程的解。

师:请在学案上的直角坐标系中先画出一次函数的图象,再标出以上述的方程的解中为横坐标,为纵坐标的点,思考:二元一次方程的解与一次函数图象上的点有什么关系?

教学引入

师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。

动画演示:

场景一:正方形折叠演示

师:这就是我们得到的正方形。下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。请大家测量各边的长度、各角的大小、对角线的长度以及对角线交点到各顶点的长度。

[学生活动:各自测量。]

鼓励学生将测量结果与邻近同学进行比较,找出共同点。

讲授新课

找一两个学生表述其结论,表述是要注意纠正其语言的规范性。

动画演示:

场景二:正方形的性质

师:这些性质里那些是矩形的性质?

[学生活动:寻找矩形性质。]

动画演示:

场景三:矩形的性质

师:同样在这些性质里寻找属于菱形的性质。

[学生活动;寻找菱形性质。]

动画演示:

场景四:菱形的性质

师:这说明正方形具有矩形和菱形的全部性质。

及时提出问题,引导学生进行思考。

师:根据这些性质,我们能不能给正方形下一个定义?怎么样给正方形下一个准确的定义?

[学生活动:积极思考,有同学做跃跃欲试状。]

师:请同学们回想矩形与菱形的定义,可以根据矩形与菱形的定义类似的给出正方形的定义。

学生应能够向出十种左右的定义方式,其余作相应鼓励,把以下三种板书:

“有一组邻边相等的矩形叫做正方形。”

“有一个角是直角的菱形叫做正方形。”

“有一个角是直角且有一组邻边相等的平行四边形叫做正方形。”

[学生活动:讨论这三个定义正确不正确?三个定义之间有什么共同和不同的地方?这出教材中采用的是第三种定义方式。]

师:根据定义,我们把平行四边形、矩形、菱形和正方形它们之间的关系梳理一下。

生:我发现二元一次方程的解就是相对应的一次函数图象上的点的坐标。

师:很好!反过来,请问:一次函数图象上的点的坐标是否是与其相对应的二元一次方程的解呢?

生:是的。并且二元一次方程的解中的、的值就是相对应的一次函数图象上点的横、纵坐标的值。

三、巩固基础

师:非常好!那下面的题目你会解吗?

(学生读题)题目:方程有一个解是,则一次函数的图象上必有一个点的坐标为______

生:(2,1)

(学生读题)题目:一次函数的图象上有一个点的坐标为(3,2),则方程必有一个解是_________

生:

师:你能把下面的二元一次方程转化成相应的一次函数吗?

(学生读题)把下列二元一次方程转化成的形式:

(1)(2)

生:第(1)题利用移项,得到,所以

第(2)题利用移项,得到,两边同时除以2,所以

四、感悟提升

师:如果将和组成二元一次方程组,你能用代入消元法或者加减消元法求出它的解吗?

生:能,我算出

师:很好!你能在同一直角坐标系中画出一次函数与的图象吗?

生:可以。(动手在学案上画图)

师:观察两条直线的位置关系,你有什么发现?

生:我发现这两条直线相交,并且交点坐标是(2,1)。

师:通过以上活动,你能得到什么结论?

生:我发现刚刚求出的二元一次方程的解刚好就是一次函数与的图象的交点坐标(2,1)。

师:很好!你能抽象成一般的结论吗?

生:如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解。

师:非常好!用一次函数的图象解二元一次方程组的方法就是我们今天要学习的二元一次方程组的图象解法。

师:你能学以致用吗?

y=2x-5

y=-x+1

题目:如图,方程组的解是___________

生:根据图象可知:一次函数与的图象的交点是(2,-1),因此,方程组的解是。

师:回答得真棒!

五、例题教学

例题:利用一次函数的图象解二元一次方程组。

师:请大家在学案的做中感悟栏内上大胆地写出解题过程。

生:(投影展示解题过程)略。

师:很好!让我们一起来看一下老师准备的解题过程(略)

师:你能就此归纳出二元一次方程组的图象解法的一般步骤吗?

生:先将二元一次方程组中的方程化成相应的一次函数,然后画出一次函数的图象,找出它们的交点坐标,就可以得出二元一次方程组的解。

师:非常好!我们可以用12个字的口诀来记住刚才同学的步骤:变函数,画图象,找交点,写结论。

师:接下来请同学们在学案上的巩固强化栏内利用图象解法求出你心里埋你所喜欢的二元一次方程组的解。

生:(各自动手操作,教师展示学生求解过程)

师:观察你作的图象,你有什么发现吗?

生:我发现有些一次函数图象的交点比较容易看出来,而有些一次函数图象的交点不容易看出来是多少。

师:是的,所以在这里老师需要说明的是我们用图象法求解一元二次方程组的解得到的是近似解。

师:请大家比较一下,二元一次方程组的图象解法和我们以前学过的代数解法——代入消元法、加减消元法相比,那种方法简单一些?

生:代入消元法、加减消元法简单。

师:二元一次方程组的图象解法既不比代数解法简单,且得到的解又是近似的,为什么我们还要学习这种解法呢?原因有以下几个方面:一是要让我们学会从多种角度思考问题,用多种方法解决问题;二是说明了“数”与“形”存在着这样或那样的密切联系,有时我们要从“数”的角度去考虑“形”的问题,有时我们又要从“形”的角度去考虑“数”的问题,这里是从“形”的角度来考虑“数”的问题;三是为了以后进一步学习的需要。

师:看来大家都很爱动脑筋,那么接下来我们将例题加以变化。

六、例题变式

题目:用图象法求解二元一次方程组时,两条直线相交于点(2,-4),求一次函数的关系式。

师:请一位同学来分析一下。

生:由两条直线的交点坐标(2,-4)可知,二元一次方程组的解就是,把代入到二元一次方程组中,可得:,解得,所以一次函数的关系式为。

师:非常好!

七、感悟归纳

师:再请同学们思考,如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组的解是什么呢?

生:我想如果二元一次方程组转化成的一次函数的图象没有交点,那么所对应的二元一次方程组应该无解。

八、拓宽提升

题目:不画函数的图象,判断下列两条直线是否有交点?它们的位置关系如何?每组一次函数中的有什么关系?

(1)与;

(2)与

师:你会怎样分析这道题?

生:我们只要求解一下由这两个一次函数所组成的二元一次方程组的解的情况就可以判断两条直线的位置关系。如果方程组有解,那么相应的两条直线就是相交,如果方程组无解,那么相应的两条直线就是平行的位置关系。

师:很好!抽象成一般结论怎样叙述?

生:对于直线与,当时,两直线平行;当时,两直线相交。

九、例题再探

题目:利用一次函数的图象解二元一次方程组

问:(1)这两条直线有什么特殊的位置关系?

(2)这两个一次函数的有何特殊的关系?

(3)由此,你能得出怎样的结论?

师:哪位同学来尝试一下?

生:(1)这两条直线是垂直的位置关系;

(2)这两个一次函数的相乘的结果等于-1;

(3)仿照刚才的结论,我得出的结论是:对于直线与,当时,两直线垂直。

师:太棒了!那下面的这一题你会做吗?

题目:已知直线和直线

(1)若,求的值;

(2)若,求垂足的坐标。

师:谁来试一下?

生:由前面的结论我们可以得出,如果,则,解得:;如果,则,解得,将代入二元一次方程组,可得,求出方程组的解就可以得出垂足的坐标。

十、学会创新

师:请你根据这节课中的例题(或习题)在学案中编(或出)一道题。看谁出的题新颖、精妙!

生:(畅所欲言,踊跃尝试)

十一、小结与思考

师:(1)这节课你学到了什么?

(2)你还存在哪些疑问?

生:(分组讨论,代表发言总结)

【设计说明】

本节课的两个知识点:二元一次方程和一次函数的关系,二元一次方程组的图象解法对于学生来说都是难点。就本节课而言,前者较为重要,后者难度较大。确定本节课的重点为前者,是因为学生必须首先理解二元一次方程和一次函数在数与形两方面的联系,在此基础上才能解决好后面的难点。在重难点的处理上,为了解决学生对重点的理解,用一组二元一次方程组串起一节课,加以变式,既使得学生理解了重点内容,又为后面的难点突破留下了一定的时间和空间。本节课的教学,主要以问题为线索,注重引导学生仔细观察、独立思考、认真操作、分组讨论、合作交流、师生互动,这对本节课的重难点的突破还是有效的,同时也体现了新课改提倡的学生的“自主、合作、探究”的学习方式的培养。另外,对利用二元一次方程组的解判断直线的位置关系作为补充,渗透数形结合思想,也对教学目标中的情感态度和价值观的又一方面体现。

【教学反思】

这节课以“回顾、先思”为先导,以“操作、思考”为手段,以“数、形结合”为要求,以“引导探究,变式拓宽”为主线,从旧知引入,自然过渡、不落痕迹。首先提出学生所熟知的二元一次方程并讨论其解的情况,为后面探究二元一次方程与一次函数之间的关系作了必要的准备,结构安排自然、紧凑。在操作中,提出问题、深化认识。一切知识来自于实践。只有实践,才能发现问题、提出问题;只有实践,才能把握知识、深化认识。先让学生画出一次函数的图象,在画图的过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图象上。”在应用结论探索一元二次方程组的图象解法时,也是在操作中来发现问题。这样,就给了学生充分体验、自主探索知识的机会;使他们在自主探索、合作交流中找到了快乐,深化了认识。以能力培养为核心,引导探究为主线,数、形结合为要求。能力培养,特别是创新能力的培养是新课程关注的焦点。能力培养是以自主探究为平台。“自主”不是一盘散沙,“探究”不是漫无边际。要提高探究的质量和效益必须在教师的引导下进行。为达到这一目的,教案中设计了“探究导学”、“例题变式”、“例题再探”、“学会创新”和“拓展提升”。新课程理念指出:教师是课程的研究者和开发者。这就要求我们:在新课程标准的指导下,认真研究教材,体会教材的编写意图。在此基础上,设计出既体现课程精神,又适合本班学生实际的教学案例。本节课前半部分时间有些慢,后半部分例题再探和学会创新时间不够。建议有针对性的学生板演多一点,进一步加强双基的落实。

【同伴点评】

本节课教师创设问题情境,引导学生观察、思考、操作、探究、合作交流。问题的设计层层递进,通过问题的逐一解决,师生最终形成共识,达到了揭示二元一次方程组与一次函数的图象关系的目的。(李晓红)

在例题教学及学生动手尝试时,教师在学生大胆尝试之后给出解题过程,强调了解题的规范性,有利于培养学生的严谨认真的学习态度。同时强调了由于二元一次方程组的图象解法得到的解往往是近似的,因此必须检验。教师对学习二元一次方程组的图象解法的必要性的解释,是非常有必要的,这一解释解决了学生的疑惑,同时也渗透了数形结合思想,也是教学目标中的情感态度和价值观的体现。对于这一解释,相当一部分教师在这一节课中并没有很好解决。这一处理方法值得他人借鉴。(丁叶谦)

本节课老师准备充分,教学环节紧紧相扣。授课老师充分体现了课题:“先思后导,变式拓宽教学设计”的精神,不断地创设问题情境,引导学生学习新知,在探索二元一次方程组的图象解法时给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。同时对例题连续的再利用,不断变化,让学生在变式中不断丰富对二元一次方程组图象解法的认识,充分认识二元一次方程组图象解法的实用性,学会创新环节的设计更是极大地调动学生学习的积极性。教师教态亲切,语言生动,娓娓道来。

初中数学二元一次方程组教案 篇3

一、教材分析

本课内容是在学生掌握了二元一次方程组有关概念之后的学习内容,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完以后可以帮助我们解决一些实际的问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础。

二、教学目标

1.使学生学会用代入消元法解二元一次方程组.

2.理解代入消元法的基本思想;了解化“未知为已知”的转化过程,体会化归思想.

三、教学重难点

1.重点:用代入法解二元一次方程组.

2.难点:在“消元”的过程中能够判断消去哪个未知数,使得解方程组的运算转为较简便的过程。

四、教学过程

(1)复习引入

在上节课中我们学习了二院一次方程组的有关概念,并学习了二元一次方程组的概念还学会判断一组值是否是二元一次方程组的解的问题,同学们还记得二元一次方程组和二元一次方程组的解的概念吗?追问二元一次方程组既然有解那么它们的解又怎么求呢?

设计意图:让学生复习巩固二元一次方程组和二元一次方程组解的概念,追问其他一个抛砖引玉的效果,激起学生的学习兴趣,引出课题。

(2)探究新知

此过程通过播放洋葱视频中的代入消元法片段视频,播放致列出二元一次方程组和一元一次后点击暂停,先让学生考虑想清楚两个问题。

一个问题是为什么能用一元一次方程解决的实际问题我们要用二元一次方程组来解决?第二个问题观察二元一次方程组和一元一次方程组之间有何异同?学生想清楚这两个问题后,渗透消元的思想,然后继续播放视频让学生知道二元一次方程组完整的解题过程,并在每一步做出相应的解释,怎么变化而来。

播放视频完后先让学生自主总结归纳解二元一次方程组的基本步骤,教师引导总结。接着完成配套的3个习题,强化训练。

(3)例题讲解

让学生尝试解答

设计意图:让学生通过例1和例2的对比,引出如何选择变化有利于计算的问题。

预想大部分学生例2会存在这样的问题到底选择哪个方程变形,当学生做出例1,犹豫例2时,提出这样两个问题:

(1)在解二元一次方程组的步骤中变形的过程我们应当如何变形?把一个方程变形为用含x的式子表示y(或含y的式子表示x)

(2)选择哪个方程变形比较简便呢?

再一次激起学生的学习兴趣,接着播放洋葱视频继续代入消元法片段视频,

让学生清楚的`知道在不同的二元一次方程组中在变形的过程选择那一个方程,选择那一个未知数变形能简便的进行运算。

五、课堂小结

1.这节课你学到了哪些知识和方法?

2.你还有什么问题或想法需要和大家交流分享?

六、课后作业布置:

xxx

七、课后反思

通过洋葱视频辅助教学,使得学生容易体会到“消元”思想的渗透,学生能够学会规范解题。通过视频的讲解能够准确的选择要变形的方程,如果是传统的教学方式可能会出现很多学生不理解的地方,但通过洋葱数学短小精辟的视频讲解一下子让学生理解透!

初中数学二元一次方程组教案 篇4

学习目标:

1.使学生初步理解二元一次方程与一次函数的关系

2.能根据一次函数的图像求二元一次方程组的近似值

3.能解二元一次方程组的方法求两条直线的交点坐标

学习重点:

1.用作图像法求二元一次方程组的近似值

2.用解二元一次方程组的方法求两条直线的交点坐标

学习难点:

1.做图像时要标准、精确,近似值才接近

2.解二元一次方程组时计算准确,方法适宜

学习方法:

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1

(1)方程x+y=5的解有多少组?写出其中的几组解。

(2)在直角坐标系中分别描出以上这些解为坐标的点,它们在一次函数y=5-x的图像上吗?

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(4)以方程x+y=5的解为坐标的所有点组成的图像与一次函数y=5-x的图像相同吗?

(5)由以上的探究过程,你发现了什么?

问题2

(1)在同一个直角坐标系内分别作出一次函数y=5-x和y=2x-1的图像,这两个图像有交点吗?如果有,写出交点坐标?

(2)一次函数y=5-x和y=2x-1的交点坐标与方程组的解有什么关系?你能说明理由吗?

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

(1)用做图像的方法解方程组

(2)用解方程的方法求直线y=4-2x与直线y=2x-12交点

初中数学二元一次方程组教案 篇5

一、教材的地位与作用

在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础的作用。

二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。

二、教学目标

1、知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。

2、数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。

3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)

4、情感体验:

①在列方程组-表示和解决实际问题的过程中,体验到数学的实用性,提高学习数学的兴趣。

②在探讨解决问题的过程中,敢于发表自己的见解,理解他人的看法并与他人交流。

三、教学重点、难点

重点:能用二元一次方程(组)来表示一些实际问题的数量关系,弄清二元一次

方程(组)及它们解的.含义。

难点:能针对具体问题列出二元一次方程(组),对二元一次方程(组)的解的探

求。

四、教法

(1)启发式教学

(老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)

(2)学案式教学

(让学生自己阅读,自主讨论,探索研究获得知识,得出结论)

五、学法

在老师的引导下,充分发挥学生的主观能动性,通过观察、讨论、分析、探索等步骤,自己发现问题提

出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。

六、教学过程

(一)复述回顾:以二人小组完成学案上的3个问题;

(二)创设情境――引入课题

鸡兔同笼

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?

让学生用一元一次方程解决问题

设一个未知数列一元一次方程来解

就会出现方程:2x+4(35-x)=94(设鸡x只)...........①

4x+2(35-x)=94(设兔x只)............②

让学生设俩未知数来解,估计大部分同学列不出来,那么无论列出与否,引出正

题--二元一次方程组。

(三)设问导读与自我检测

同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小

组讨论,与组长核对答案,先组内解决疑难问题,教师下去收集问题,并指导、

生对新知识的探究。

1.对鸡兔同笼问题列方程,设鸡x只,兔y只,

X+y=35........③

2x+4y=94......④

先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让

学生说出二元一次方程的定义)举例说明需要注意的地方,和一些难以分辨的方

程,马上做自我检测第一题,发现问题解决问题。

2.前面的问题同事满足③、④,把他们和在一起就组成二元一次方程组,试着让

学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。

初中数学二元一次方程组教案 篇6

教学目标:

1、使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2、通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性。

重点:能根据题意列二元一次方程组;根据题意找出等量关系;

难点:正确发找出问题中的两个等量关系

教学过程:

一、复习

列方程解应用题的步骤是什么?

审题、设未知数、列方程、解方程、检验并答

新课:

看一看课本99页探究1

问题:

1题中有哪些已知量?哪些未知量?

2题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)30只母牛和15只小牛一天需用饲料为675kg

(2)(30+12只母牛和(15+5)只小牛一天需用饲料为940

练一练:

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

2、有大小两辆货车,两辆大车与3辆小车一次可以支货15。50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?

3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?

4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?

初中数学二元一次方程组教案 篇7

一、说教材分析

1、教材的地位和作用

二元一次方程组是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。本节课是在学生学习了一元一次方程的基础上,继续学习另一种方程及方程组,它是学生系统学习二元一次方程组知识的前提和基础。通过类比,让学生从中充分体会二元一次方程组,理解并掌握解二元一次方程组的基本概念,为以后函数等知识的学习打下基础。

2、教学目标

知识目标:通过实例了解二元一次方程和它的解,二元一次方程组和它的解。

能力目标:会判断一组未知数的值是否为二元一次方程及方程组的解。会在实际问题中列二元一次方程组。

情感目标:使学生通过交流、合作、讨论获取成功体验,激发学生学习知识的兴趣,增强学生的自信心。

3、重点、 难点

重点:二元一次方程和二元一次方程的解,二元一次方程组和二元一次方程组的解的概念。

难点:在实际生活中二元一次方程组的应用。

二、教法

现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、言道者,教学的一切活动必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生留出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

另外,在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好发激发学生的学习兴趣,增大教学容量,提高教学效率。

三、学法

“问题”是数学教学的心脏,活动是数学教学中的灵魂。所以我在学生思维最近发展区内设置并提出一系列问题,通过数学活动,引导学生:自主性学习,合作式学习,探究式学习等,激发学生的学习兴趣,提高学生的数学思维和参与度,力求学生在“双基”数学能力和理性精神方面得到一定发展。

四、教学过程

新课标指出,数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下教学环节:

(1)复习旧知,温故知新

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分。负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

设计意图:构建注意主张教学应从学生已有的知识体系出发,方程是本节课深入研究二元一次方程组的认知基础,这样设计有利于引导学生顺利地进入学习情境。

(2)创设情境,提出问题

这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,

胜场积分+负场积分=总积分。

这两个条件可以用方程

x+y=22

2x+y=40

表示:

上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程。

把两个方程合在一起,写成

x+y=22

2x+y=40

像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组。

设计意图:以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望,通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。

(3)发现问题,探求新知

满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中。

初二数学教案大全人教版(收藏九篇)


作为一名默默奉献的教育工作者,常常要根据教学需要编写教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?以下是小编收集整理的人教版初二数学下册教案,欢迎阅读,希望大家能够喜欢。

初二数学教案大全人教版 篇1

一、教材分析

本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标

1、知识目标:了解多边形内角和公式。

2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点

重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:

引导发现法、讨论法

五、教具、学具

教具:多媒体课件

学具:三角板、量角器

六、教学媒体:

大屏幕、实物投影

七、教学过程:

(一)创设情境,设疑激思

师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

活动一:探究四边形内角和。

在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:

(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)

方法1:把五边形分成三个三角形,3个180的和是540。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

师:你真聪明!做到了学以致用。

交流后,学生运用几何画板演示并验证得到的方法。

得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

(二)引申思考,培养创新

师:通过前面的讨论,你能知道多边形内角和吗?

活动三:探究任意多边形的内角和公式。

思考:

(1)多边形内角和与三角形内角和的关系?

(2)多边形的边数与内角和的关系?

(3)从多边形一个顶点引的对角线分三角形的个数与多边形边数的关系?

学生结合思考题进行讨论,并把讨论后的结果进行交流。

发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

得出结论:多边形内角和公式:(n-2)·180。

(三)实际应用,优势互补

1、口答:(1)七边形内角和()

(2)九边形内角和()

(3)十边形内角和()

2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

(2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

(四)概括存储

学生自己归纳总结:

1、多边形内角和公式

2、运用转化思想解决数学问题

3、用数形结合的思想解决问题

(五)作业:

练习册第93页1、2、3

八、教学反思:

1、教的转变

本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者,在引导学生画图、测量发现结论后,利用几何画板直观地展示,激发学生自觉探究数学问题,体验发现的乐趣。

2、学的转变

学生的角色从学会转变为会学。本节课学生不是停留在学会课本知识层面,而是站在研究者的角度深入其境。

3、课堂氛围的转变

整节课以“流畅、开放、合作、隐导”为基本特征,教师对学生的思维减少干预,教学过程呈现一种比较流畅的特征。整节课学生与学生,学生与教师之间以“对话”、“讨论”为出发点,以互助合作为手段,以解决问题为目的,让学生在一个比较宽松的环境中自主选择获得成功的方向,判断发现的价值。

初二数学教案大全人教版 篇2

教学目标

1.会解简易方程,并能用简易方程解简单的应用题;

2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;

3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。

教学建议

一、教学重点、难点

重点:简易方程的解法;

难点:根据实际问题中的数量关系正确地列出方程并求解。

二、重点、难点分析

解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

三、知识结构

导入方程的概念解简易方程利用简易方程解应用题。

四、教法建议

(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。

(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

五、列简易方程解应用题

列简易方程解应用题的一般步骤

(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.

(2)找出能够表示应用题全部含义的一个相等关系.

(3)根据这个相等关系列出需要的代数式,从而列出方程.

(4)解这个方程,求出未知数的值.

(5)写出答案(包括单位名称).

概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.

初二数学教案大全人教版 篇3

一.教材分析

首先我对本节教材内容进行如下分析:

本节课的教学设计力图体现“尊重学生,注重发展”,强调以学生为主体的学习活动对学生理解数学的重要性,本节教学内容分数除法中的解决问题,问题情境的数量关系表现为已知一个数的几分之几是多少,要求这个数,这样的的实际问题,与上一单元求一个数的几分之几是多少的实际问题,具有紧密的内在联系,即数量关系相同,区别在于已知数与未知数交换了位置,因此我有意识地采用多种活动方式,让学生理解知识的产生和发展的过程,尝到发现数学的滋味

二.学情分析:

我跟班上来的,对我班学生也比较了解,我班有47名学生,人数比较多,对数学知识的学习两极分化比较严重,大部分学生对数学学习有着浓厚的兴趣,但也有一部分学生与其他学生差异较大,对数学学习缺乏信心,积极思考的.习惯有待于培养。因此在本节教学中,我关注更多的是用学生已有的知识经验激发学生的兴趣。

三.教学目标:

1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重点:用列方程的方法解决问题。

四.教学难点:

明确题中的数量关系。

五.教学准备:

PPT课件、尺子等。

六.教学过程:

一、复习导入

1.第一关

找出下面题中的单位“1”,并写出数量关系式。

(1)白兔的只数占兔子总只数的1/3。

(2)甲数正好是乙数的4/5。

(3)男生人数的5/6恰好和女生同样多。

2.第二关

阅读下面的句子,说说你的理解。

根据测定,儿童体内的水分约占体重的4/5,小明体重有35kg。他的体内水分是多少千克?

3.师小结:同学们对于运用分数乘法来解决问题这一块内容掌握的真不错。今天,我们将继续研究运用分数除法来解决一些生活中的问题。

二、探究新知

(一)收集信息,明确条件问题

出示例题:根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5。小明体内有28kg的水分,小明的体重是多少千克?

(1)你知道了什么信息?

(2)成人的信息与问题有关系吗?

(二)画图分析,分析数量关系

提问:每当遇到这样的题,我们常规作法是什么?(找到关系句,画出单位“1”,画图理解,写出等量关系式。)

(1)问题中最关键的句子是什么?

(2)从“儿童体内的水分约占体重的4/5”这句话中你能知道什么?

(3)哪个量是单位“1”?用线段图如何表示?

(4)列出等量关系式。

单位“1”的量×对应分数=对应量

小明的体重×4/5=小明体内水分的质量

(三)读懂过程,感悟不同方法

(1)在等量关系式中,哪个量是未知的,哪个量是已知的?

(2)学生尝试完成。

预设有3种方法。

方法一:根据等量关系式列方程解,设小明的体重是×千克,列出方程,解出×。

方法二:根据:小明的体重×4/5=小明体内水分的质量

则:小明的体重=小明体内水分的质量÷4/5

方法三:根据份数的方法。28÷4×5=7×5=35(kg)

(四)回顾反思,沟通不同方法

(1)怎样检验结果是否正确?35×4/5=28

(2)这些不同的算法中有什么相同点与不同点?(单位“1”相同,数量之间的关系相同。但一道是已知单位“1”,一道是未知单位“1”)

三、巩固练习,提升认识

1、完成练习八第1题和第3题.先自主解答,再集体交流。

2、完成练习八第2题.做完思考:“鲜牛奶250ml”这个条件与要求的问题有没有关系?

3、完成练习八4题。本题有几个要求的问题?有哪些信息?你是怎样筛选的?

四、全课总结,布置作业

1、谈谈你今天有什么收获?

2、作业:第39页练习八,第5.6题。

初二数学教案大全人教版 篇4

教学目标

1、初步掌握频率分布直方图的概念,能绘制有关连续型统计量的直方图;

2、让学生进一步经历数据的整理和表示的过程,掌握绘制频率分布直方图的方法;

教学重点

掌握频率分布直方图概念及其应用;

教学难点

绘制连续统计量的直方图

教学过程

Ⅰ.提出问题,创设情境,引入新课:

问题:我们班准备从63名同学中挑选出身高相差不多的40名同学参加比赛,那么这个想法可以实现吗?应该选择身高在哪个范围的学生参加?

63名学生的身高数据如下:

158158160168159159151158159

168158154158154169158158158

159167170153160160159159160

149163163162172161153156162

162163157162162161157157164

155156165166156154166164165

156157153165159157155164156

解:(确定组距)最大值为172,最小值为149,他们的差为23

(身高x的变化范围在23厘米,)

(分组划记)频数分布表:

身高(x)划记频数(学生人数)

149≤x

152≤x

155≤x

158≤x

161≤

164≤x

167≤x

170≤x

从表中看,身高在155≤x

(绘制频数分布直方图如课本P72图12.2-3)

探究:上面对数据分组时,组距取3,把数据分成8个组,如果组距取2或4,那么数据应分成几个组,这样做能否选出身高比较整齐的队员?

分析:如果组距取2,那么分成12组;如果组距取4,那么分成6组。都可以选出身高比较整齐的队员。

归纳:组距和组数的确定没有固定的标准,要凭借经验和研究的具体问题来决定,通常数据越多,分成的组数也越多,当数据在100个以内时,根据数据的多少通常分为5~12个组。

我们还可以用频数折线图来描述频数分布的情况。频数折线图可以在频数分布直方图的基础上画出来。

首先取直方图中每一个长方形上边的中草药点,然后在横轴上取两个频数为0的点,在上方图的左边取(147、5,0),在直方图的右边取点(174、5,0),将这些点用线段依次连接起来,就得到频数折线图。

频数折线图也可以不通过直方图直接画出。

根据表12.2-2,求了各个小组两个端点的平均数,而这些平均数称为组中值,用横轴表示身高(组中值),用纵轴表示频数,以各小组的组中值为横坐标,各小组对应的频数为纵坐标描点,另外再在横轴上取两个点,依次连接这些点,就得到频数分布折线图如课本P73图。

II课堂小结:

(1)怎样制作频数分布直方图和频数分布折线图

(2)组距和组数没有确定标准,当数据在1000个以内时,通常分成5~12组

(3)如果取个长方形上边的中点,可以得到频数折线图

(4)求各小组两个断点的平均数,这些平均数叫组中值。

初二数学教案大全人教版 篇5

一、课堂引入

1.什么叫做平行四边形?什么叫做矩形?

2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形.

矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

二、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的.四边形是矩形;(×)

(2)有四个角是直角的四边形是矩形;(√)

(3)四个角都相等的四边形是矩形;(√)

(4)对角线相等的四边形是矩形;(×)

(5)对角线相等且互相垂直的四边形是矩形;(×)

(6)对角线互相平分且相等的四边形是矩形;(√)

(7)对角线相等,且有一个角是直角的四边形是矩形;(×)

(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形.(√)

指出:

(l)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

例2(补充)已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4cm,求这个平行四边形的面积.

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

解:∵ 四边形ABCD是平行四边形,

∴AO=AC,BO=BD.

∵ AO=BO,

∴ AC=BD.

∴ ABCD是矩形(对角线相等的平行四边形是矩形).

在Rt△ABC中,

∵ AB=4cm,AC=2AO=8cm,

∴BC=(cm).

例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明

初二数学教案大全人教版 篇6

设计说明:

本节课是在学生学习了整数大小比较的知识的基础上进行教学的,目的是使学生掌握小数大小比较的方法。通过学生的自主探究、合作交流,培养学生的探究能力。

本节课的教学有以下几方面的特点:

1、关注对旧知的复习,为学习新知作铺垫。

上课伊始,设计几组整数大小比较的复习题,引起学生对旧知的回忆,回顾整数大小比较的方法,为下面学习小数的大小比较奠定基础。

2、关注方法的类比,实现知识的迁移。

类比是根据两种或两类对象在某些方面的相似,得出它们在其他方面也可能相似的结论。它是一种创造性的数学思想方法。类比在掌握数学概念、理解数学本质、探索解题方法等方面都有着不可忽视的作用。小数的大小比较并不难,它与整数的大小比较在方法上基本相同。在教学中将研究的主动权交给学生,引导学生通过小组讨论、合作交流,类比整数大小比较的方法,掌握小数大小比较的方法,实现知识的良好迁移。

3、关注习题设计的实践性,加强数学与生活的联系。

在设计练习时,加强数学与生活的联系,让学生在现实、具体的情境中,应用数学解决问题,体现了数学的价值。

课前准备:

教师准备PPT课件卷尺

学生准备卷尺

教学过程:

一、创设情境,生成问题

1、复习准备。

我们已经学过了比较整数大小的方法,请你们在各题的___里填上“>”“<”或“=”,并说说怎样比较整数的大小。

1001___999654___5438321___8436

(1)引导学生明确:当整数位数不同时,位数多的那个数大;当位数相同时,从最高位开始比较,最高位上的数字大的那个数大,最高位上的数字相同时,比较下一位上的数字,以此类推,直到比出大小为止。

(2)老师的.身高是1米7分米,如果用小数表示是多少米?(1.7米)小明的身高是1米4分米,如果用小数表示是多少米?(1.4米)

请同学们观察身高,谁高谁矮?(老师高,小明矮)看来小数也是有大小的。

2、引入新课。

我们已经学会了比较整数大小的方法,那么你们想知道怎么比较小数的大小吗?这节课我们就来探究比较小数大小的方法。

设计意图:创设有趣味性的问题情境,抓住新旧知识之间的联系,设置复习题,将整数的大小比较和小数的大小比较进行有机的衔接,明确了本节课的学习内容,同时激发了学生探究新知的欲望。

二、探索交流,解决问题

1、谈话导入:(课件出示)学校的运动会上,小明、小刚、小强和小林正在跳高场地上进行比赛,他们使出浑身解数都想为自己的班级争得荣誉,班里的同学们也在为他们呐喊助威。比赛结束,成绩如下:

姓名

小明

小刚

小强

小林

成绩/米

0.8

1.2

1.1

0.9

2、提问:你能排出他们的名次吗?

3、以小组为单位讨论交流:你是怎样排列的?为什么这样排列?

4、学生汇报讨论结果。

5、在学生回答问题时注意收集信息,并适时提问,引导学生总结比较的方法。

方法一利用小数的含义来比较。

因为1.2米是1米2分米,1.1米是1米1分米,0.8米是8分米,0.9米是9分米,所以1.2米>1.1米>0.9米>0.8米。

方法二化成厘米后比较。

因为1.2米是120厘米,1.1米是110厘米,0.8米是80厘米,0.9米是90厘米,120厘米>110厘米>90厘米>80厘米,所以1.2米>1.1米>0.9米>0.8米。

方法三借助测量工具进行比较。

在卷尺上找到每个人跳高成绩的刻度,根据卷尺上的位置来比较大小。观察卷尺上的数据,得出1.2米>1.1米>0.9米>0.8米。

师小结:同学们能把新的问题转化成已经学过的知识进行解决,是一种非常有效的学习方法,这种方法在今后的学习中还会经常用到。

初二数学教案大全人教版 篇7

一、教学目标

1.类比分数的乘除运算探索分式的乘除运算法则。

2.会进行简单分式的乘除运算。

3.能解决一些与分式乘除运算有关的简单的实际问题。

4. 在故事情境中激发学生学习数学的兴趣,促进良好的数学观的养成。数学生活化,学好数学,为幸福人生奠基。

二、教材分析

本节课选自北师大版八下数学《5.2分式的乘除法》的第一课时。学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。分式是分数的“代数化”,与分数的约分、分数的.乘除法有密切的联系,也为后面学习分式的混合运算、分式方程等做了准备。

三、学情分析

八年级学生具有很强的感性认识的基础,对具体的实践活动十分感兴起,在课堂中思维活跃,乐于表现自己,但在推理方面还不够严谨。采用自主学习与合作学习相结合的学习方式,留给学生足够的自主活动、相互交流的空间,让学生在观察中不断发现数学问题、在实践中领悟数学思想,逐步形成科学的数学价值观。

四、重点难点

教学重点:分式的乘除运算法则的理解与运用

教学难点:分子、分母是多项式的分式的乘除法的运算

五、教学过程

(一)、创设情境,引入新课

活动1:课前三分钟

学生主持:请同学们根据我的描述猜一个人物?…

生:鲁班

学生主持:根据小草的构造鲁班发明了锯子,鲁班运用了什么思想方法?

生:类比

这个小故事让我们认识到类比的重要性,前面我们类比分数研究了分式的基本性质。今天,我们就来类比分数的乘除研究5.2分式的乘除法。

【设计意图】:让学生观察图片,不但可以体会到数学来源于生活,唤起学生对数学的热爱,激发学生学习的兴趣,为类比分数乘除探索分式乘除法则打下基础。

(二)、合作学习,共探新知

活动2:预习反馈,探索法则

问题:口答:

猜一猜

师生共同归纳分式的乘除法法则,这里运用了什么数学思想?类比、转化数学思想

【设计意图】让学生类通过类比→观察猜想→-归纳明晰→-得出结论。通过类比分数的乘除法则总结分式的乘除法法则。

例题讲解,师生共同完成。

注意:1.分式乘除法的实质是约分化简。

2.结果是最简分式或整式。

单项式 → 约分

分子、分母 分类

多项式 → 分解因式,约分

开心练习:

学生板演,小组代表在小白板上答题,其余同学在学案上完成。

【设计意图】:运用“兵教兵”教学方式,让学生通过充分交流,自学已会的学生教还不会的学生教师尽可能少讲,确保学生的学习时间,提高课堂效率。

活动3:活学活用

炎热的夏天到了,如果能吃到甘甜的西瓜是多么惬意啊。你会买西瓜吗?让我们跟随咱班的两名同学看看她们是如何买西瓜的?

播放学生买西瓜视频。

问题:假如我们把西瓜都看成是球形,半径为R,并把西瓜瓤的密度看成是均匀的,西瓜皮厚都是xcm,,怎样买西瓜合算?

先猜一猜,再算一算。

链接几何画板:观察体积比的变化。

变式:若西瓜的体积不变,是买皮厚的还是皮薄的西瓜?(几何画板演示)

【设计意图】:将问题生活化,让同学们帮助解决问题,激发学生的求知欲,渗透数感和几何直观,巧妙的利用几何画板将问题动起来,生动直观。变式训练,让学生学会举一反三。

(三)、跟踪训练,分层达标

1.利用慧学云交互平台,进行选择题的跟踪训练。

学生在规定的时间内答题,师现场根据答题结果统计,进行有针对性的讲解。学生充当小老师,教师予以补充。

2.智力冲浪

(1)下面的计算对吗?如果不对,应该怎样改正?

(2)计算

(4)计算

【设计意图】:设置梯度训练题,学生砸蛋抢答问题,巩固本节课的知识点,检验学生的掌握程度。

(四)、归纳小结,形成体系

我们这节课都学习了哪些知识? 你有哪些收获呀?那我们用到哪些数学思想?由学生归纳本节课的内容,并相互补充。

【设计意图】:构建知识思维导图,在知识树上进行梳理知识,生动直观。

类比的学习方法是学习新知识的好方法,让我们细心观察,一起研究有趣的数学吧!

(六)、布置作业,拓展延伸

必做题:P116页1题 2题

思维拓展:

初二数学教案大全人教版 篇8

教学目的

通过分析储蓄中的数量关系、商品利润等有关知识,经历运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。

重点、难点

1.重点:

探索这些实际问题中的等量关系,由此等量关系列出方程。

2.难点:

找出能表示整个题意的等量关系。

教学过程

一、复习

1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数

本利和=本金×利息×年数+本金

2.商品利润等有关知识。

利润=售价—成本; =商品利润率

二、新授

问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元?

利息—利息税=48.6

可设小明爸爸前年存了x元,那么二年后共得利息为

2.43%×X×2,利息税为2.43%X×2×20%

根据等量关系,得2.43%x·2—2.43%x×2×20%=48.6

问,扣除利息的20%,那么实际得到的利息是多少?扣除利息的20%,实际得到利息的80%,因此可得

2.43%x·2.80%=48.6

解方程,得x=1250

例1.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利15元,那么这种服装每件的成本是多少元?

大家想一想这15元的利润是怎么来的?

标价的80%(即售价)-成本=15

若设这种服装每件的成本是x元,那么

每件服装的标价为:(1+40%)x

每件服装的实际售价为:(1+40%)x·80%

每件服装的利润为:(1+40%)x·80%—x

由等量关系,列出方程:

(1+40%)x·80%—x=15

解方程,得x=125

答:每件服装的成本是125元。

三、巩固练习

教科书第15页,练习1、2。

四、小结

当运用方程解决实际问题时,首先要弄清题意,从实际问题中抽象出数学问题,然后分析数学问题中的等量关系,并由此列出方程;求出所列方程的解;检验解的合理性。应用一元一次方程解决实际问题的关键是:根据题意首先寻找“等量关系”。

五、作业

教科书第16页,习题6.3.1,第4、5题。

初二数学教案大全人教版 篇9

教学目标:

1.在解决问题和相互交流的过程中,体会在一个有括号的算式里,先算括号里的算式的必要性。

2.经历与他人交流各自算法的过程,加强小组合作。

3.灵活运用所学计算方法解决问题,感受数学与生活的'密切联系,增强应用数学意识。

教学重点:

理解含有括号的四则运算的顺序。

教学难点:

掌握含有括号的四则运算的顺序。

教具学具:

课件。

教学设计:

一、复习导入。

1.口算:100+0=0÷100=

2.说出下面各题的运算顺序。

(1)80-42+12480÷60×2

小结:在没有括号的算式里,如果只有加、减法,或者只有乘、除法,要( )按顺序计算。

(2)75-15×440÷4+6

小结:在没有括号的算式里,如果既有加、减法,又有乘、除法,要先算( )法,再算( )法。

(3)(12+4)×2200÷(40-15)×2

小结:在含有小括号的算式里,要先算( )里面的,再算( )外面的。

3.我们学过的( )、( )、( )、( )四种运算统称四则运算。今天这节课我们继续来学习它的运算顺序。(板书课题)

二、探究新课。

1.出示:96÷12+4×2

(1)小组内讨论,说说计算顺序。

(2)汇报讨论结果。(指名说,师板书。)

2.变式:96÷(12+4)×2探究有小括号的计算顺序。

(1)问:如果要求先算加法,再算除法,最后算乘法,需要在原式里添上什么数学符号?(小组合作探究)

(2)小组合作完成计算后,指名学生到黑板上板演。

(3)点评,明确:要先算小括号里面的。

3.介绍中括号“[]”,变式:96÷[(12+4)×2]探究有中括号的算式的运算顺序。

(1)认识中括号。

(2)在老师引导下明确运算顺序。

板书:96÷[(12+4)×2]

(1)放手让学生合作完成计算,师巡视辅导。

(2)指名板演后,师生共同订正,明确运算顺序,并在书上找出来齐读两遍。

三、巩固练习。

1.课本第9页的做一做。

2.一个车间在4月份的前八天生产了320台洗衣机,以后每天生产45台。4月份(按30天计算)共生产洗衣机多少台?(要求列综合算式解答)

四、扩展提高:

根据运算顺序添上小括号或中括号。

(1)32×800-400÷25先减,再乘,最后除;

(2)32×800-400÷25先除,再减,最后乘;

(3)32×800-400÷25先减,再除,最后乘;

(4)32×800-400÷25先乘,再减,最后除。

五、课堂小结。

通过这节课的学习,你有哪些收获?

初二数学人教版上册教案(摘录六篇)


作为一名优秀的教育工作者,总不可避免地需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。那要怎么写好教案呢?以下是小编整理的人教版初二数学上册教案,欢迎阅读,希望大家能够喜欢。

初二数学人教版上册教案 篇1

本人本学期担任五(3)(4)两班数学课教学。一学期的工作已经结束,为了总结经验,寻找不足。现将一学期的工作总结如下:

一、加强学习,提高思想认识,树立新的理念。

坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。通过学习新的《课程标准》,认识到新课程改革既是挑战,又是机遇。将理论联系到实际教学工作中,解放思想,更新观念,丰富知识,提高能力,以全新的素质结构接受新一轮课程改革浪潮的“洗礼”。

二、通过学习新的《课程标准》,使自己逐步领会到“一切为了学生的发展”的教学理念。

树立了学生主体观,贯彻了民主教学的思想,构建了一种民主和谐平等的新型师生关系,使尊重学生人格,尊重学生观点,承认学生个性差异,积极创造和提供满足不同学生学习成长条件的理念落到实处。将学生的发展作为教学活动的出发点和归宿。重视了学生独立性,自主性的培养与发挥,收到了良好的效果。

三、教学工作是学校各项工作的中心,也是检验一个教师工作成败的关键。

一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,大胆改革课堂教学,加大新型教学方法使用力度,取得了明显效果,具体表现在:

四、备课深入细致。

平时认真研究教材,多方参阅各种资料,力求深入理解教材,准确把握难重点。在制定教学目的时,非常注意学生的实际情况。教案编写认真,并不断归纳总结经验教训。

五、注重课堂教学效果。

针对初二年级学生特点,以愉快式教学为主,不搞满堂灌,坚持学生为主体,教师为主导、教学为主线,注重讲练结合。在教学中注意抓住重点,突破难点。

坚持参加校内外教学研讨活动,不断汲取他人的宝贵经验,提高自己的教学水平。经常向经验丰富的教师请教并经常在一起讨论教学问题。听公开课多次,自己执教二节公开课,尤其本学期,自己执教的公开课,学校领导和教师们给我提出了不少宝贵的建议,使我明确了今后讲课的方向和以后数学课该怎么教和怎么讲。

在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

工作中存在的.问题:

1、教材挖掘不深入。

2、教法不灵活,不能吸引学生学习,对学生的引导、启发不足。

3、新课标下新的教学思想学习不深入。对学生的自主学习,合作学习,缺乏理论指导。

4、差生末抓在手。由于对学生的了解不够,对学生的学习态度、思维能力不太清楚。上课和复习时该讲的都讲了,学生掌握的情况怎样,教师心中无数。导致了教学中的盲目性。

初二数学人教版上册教案 篇2

教学目的:

1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。

2、结合学生的实际情况,让学生填写算式。

3、在教学中渗透数的顺序,并进行社会秩序教育。

4、学会与人合作,体会计算的多样化,发展学生思维。

教学重点:

掌握20以内数的顺序。

教学难点:

初步建立数的概念

教学准备:

每组一个数位计数器及40-50根小棒等。

教学方法:

抓问题,用多种游戏,把抽象的数位具体化。

教学步骤:

一、创设情景,寻找关键问题

1、数学课研究数学问题,一些小棒会有什么数学问题。

(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)

2、你发现了什么数学问题。

(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)

3、游戏,看谁的手小巧。

老师报数,学生用棒子表示,讨论:快的同学的诀窍。

出示:十根可以捆一捆。

再进行游戏,让学生习惯中把1捆当作10根用。

4、完成:

()个一()个十

试一试,在计数器拔出10

个位只有几颗珠子,怎么办?(10个一是1个10)

在个位拔上一颗珠子,表示1个十,也表示10个一。

二、自主合作,解决数位顺序。

在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。

1、11-20各数在计数器上怎么表示呢?

问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。

(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)

2、

1个十,1个一是1110+1=11

10和11,十位上是1,没有变,个位由0变成1,就是11。

3、15、19、20的数位可重点检查。

(20的数位可由10-20,也可19-20来描述。)

4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。

5、练习:(口算)

10+910+810+710+610+5

10+410+39+108+107+10

6+105+104+103+10

三、实践应用,实现知识延伸

1、寻找粗心丢失的数。

游戏报数。(报数时丢一些中间数)

2、开火车顺数

游戏:数数(顺数和倒数)

3、拔珠游戏(师生――生生)

报数13,拔13并写出13,同时说13的含义,还可画珠。

4、p691-6自己完成。

四、课外实践,拓展知识应用。

1、完成10-20各数数位图及小棒图。

2、和父母互说10-20各数组成。

课后评析:

初二数学人教版上册教案 篇3

一、指导思想:

本学期我们将围绕“以改革求发展,以质量求生存,以服务求信誉,以特色创品牌”为总的指导思想,在备课组各位老师的共同协作和努力下,更新备课组各成员的教学理念,提高课堂教学水平。

二、目标任务:

学习先进的教学经验,顺利完成课本教学内容,结合各教师特点,扬长避短,形成自身鲜明的教学特色为具体目标。集体备课中应做到任务具体,具体到人,突出备课过程中的异同性,进而指导学生探究性学习,提高学生分析问题、解决问题的能力。

三、主要措施:

1.学习:钻研教材是首位,把握准教材是每位老师应具备的能力。在活动时,要根据教学实际,有侧重点的组织老师学习、重温新课标,经常对照,加以改进。积极并认真参加学校组织的各类培训活动。积极探索新的教学理念和教学方法。有针对性地研究和创新一些课例,促进备课组成员的教研水平的提高。

2. 备课:定于每周三的下午前两节课为集中备课的'时间。每节课安排好中心发言人,该老师应提供集体备课讨论稿,详细阐释教材的重难点,提出疑点,设计好课堂练习。每位教师能根据每单元的教学重点,制定出较为详细、可行的教学目标,在目标的指导下备好教学过程。在备课资源共享的基础上,利用教研活动时间和空课再集体讨论、商量。

自己也能独立思考、研究,根据班级实际设计好、修改好每一个教学环节,做好使用的“旁批。每课写好教学反思,记录下自己的点滴进步、不足与改进措施,不断完善自身,成为真正的”学习反思型“教师。

3.多媒体辅助教学:本学期,我们备课组将尽可能的利用课件辅助教学,充分利用现代信息技术,提高上课效率。

4.学生活动:充分采用讨论、交流、合作探究的小组学习方法,让学生全员参与,提高学生学习数学的兴趣。

5.听课:根据教研组的安排,积极听课评课,提倡相互听课,备课组内每位老师都要讲一堂观摩课,每一位老师都要进行观摩课点评,提高教师的授课水平和评课水平。

6.活动辅导。搞好课外活动和兴趣小组的辅导工作。

初二数学人教版上册教案 篇4

一、尊重学生,还学生学习的自由,提高学生的学习兴趣,使学生主动参。

要与学习,必须使学生对学习有兴趣。兴趣是一个人前进的动力,是永不枯竭的动源泉。要使学生有兴趣,必须留给学生学习的自由。自由活动是人发展的内在依据,学生的学习也应如此。学生并不只受教于老师,而且自己也独立学习。学生应当是主动的学习者。许多教育事实也反映出,真正的学习并不是由教师传授给学生,而是出自学生本身,我们应该让学生自发地主动地学习,留给学生充分的自由,让学生自己找到并发现、纠正自己的。如果我们把每种事情都教给学生或者规定他们按固定的程序完成,就会妨碍他们的主动参与和自主发现,妨碍他们的发展。

比如,《应用题打折销售》这一节,如果课堂上就单纯地出示例题,然后分析题意,给出解答过程,接着再模仿练习。最后帮学生总结出解决这类问题的方法和技巧。那么这类问题虽然与实际生活相关,但学生却未必有多大兴趣。假若我们设计一个课堂活动,让学生模拟商店的从进货、定价、促销到卖出的全过程,学生一定会非常积极踊跃,乐于去对打折销售的过程进行分析、计算。而且在此过程中,学生也自然会联想到各个环节中可能出现的问题,比如标价与销量的关系,进价、标价、售价与打折和利润之间的关系,这样需要学生巩固、提高的知识可能自然就解决了。

二、发挥学生的主体作用,引导学生积极主动参与教学过程

由于数学教学的本质是数学思维活动的展开,因此数学课堂上学生的主要活动是通过动脑、动手、动口参与数学思维活动。我们不仅要鼓励学生参与,而且要引导学生主动参与,才能使学生主体性得到充分的发挥和发展,只有这样,才能不断提高数学活动的开放度。这就要求我们在教学过程中为学生创造良好的主动参与条件,提供充分的参与机会,具体应注意以下几点:

(1)巧创激趣情境,激发学生的学习兴趣。

教学实践证明,情心创设各种教学情境,能够激发学生的学习动机和好奇心,培养学生的求知欲,调动学生学习的积极性和主动性,引导学生形成良好的意识倾向,促使学生主动地参与。

(2)运用探究式教学,使学生主动参与。

教学中,在以教师为主导的前提下,坚持学生是探究的.主体,根据教材提供的学习材料,伴随知识的发生、形成、发展的全过程进行探究活动,教师着力引导学生多思考、多探索,让学生学会发现问题、提出问题、分析问题、解决问题,只有这样,才能使学生品尝到自己发现的乐趣,才能激起他们强烈的求知欲和创造欲。只有达到这样的境地,才会真正实现学生的主动参与。

(3)运用变式教学,确保其参与教学活动的持续热情。

变式教学是对数学中的定理和命题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点间的内在联系的一种教学设计方法。通过变式教学,使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,促使其产生主动参与的动力,保持其参与教学过程的兴趣和热情

三、交流让学生分享快乐和共享资源

学生已有的生活经验、活动经验以及原有的生活背景,是良好的课程资源。在“图形认识初步”这节课中,有一道题问一个正方体的盒子有几个不同的展开面,我想,如果直接给学生答案有11种基本图形,他们不但不明白为什么,也想象不出来这11种基本图形会是怎样形成的,于是我让同学们从家带来正方体图形,让学生在课堂上进行剪,彼此间的交流,实现了他们对立体图形关键特性的理解和认识,大家共同分享发现和成功的快乐,共享彼此的资源。

以上就是我的教学心得,在教学中还有很多不足,在以后的教学中要继续努力,迈上新的台阶。

初二数学人教版上册教案 篇5

一、指导思想

教育学生掌握基础知识与基本技能培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。

二、学情分析

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。学生思维非常活跃,但后进面较大,有少数学生不上进,思维不紧跟老师。在学习能力上,学生课外主动获取知识的能力较差,应在合适的时候补充课外知识,拓展学生的知识面,提升学生素质;在学习态度上,绝大部分学生上课能全神贯 注,积极的投入到学习中去,少数几个学生对数学处于一种放弃的心态,学生的学习习惯养成还不理想,预习的习惯,进行总结的习惯,自习课专心致至学习的习惯,主动纠正(考试、作业后)错误的习惯,部分学生不具有,需要教师的督促才能做,陶行知说:教育就是培养习惯,这是本期教学中重点予以关注的。

三、教学目标

1.知识与技能目标

学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2.过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;通过探究一次函数图象与性质之间的关系,初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学 类比思想。

3.情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的.过程。养 成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

四、教学措施

1.作好课前准备。认真钻研教材教法,仔细揣摩教学内容与新课程教学目标,充分考虑教材内容与学生的实际情况,精心设计探究示例,为不同层次的学生设计练习和作业,作好教具准备工作,写好教案。

2.营造课堂气氛。利用现代化教学设施和准备好教具,创设良好的教学情境,营造温馨、和谐的课堂教学气氛,调动学生学习的积极性和求知欲望,为学生掌握课堂知识打下坚实的基础。

3.写好课后小结。课后及时对当堂课的教学情况、学生听课情况进行小结,总结成功的经验,找出失败的原因,并作出分析和改进措施,对于严重的问题重新进行定位,制定并实施补救方案。

4.加强课后辅导。优等生要扩展其知识面,提高训练的难度;中等生要夯实基础,发展思维,提高分析问题和解决问题的能力,后进生要激发其学习欲望,针对其基础和学习能力采取针对性的补救措施。

5.成立学习小组。根据班内实际情况进行优等生、中等生与后进生搭配,将全班学生分成多个学习小组,以优辅良,以优促后,实现共同提高的目标。

6.组织单元测试。根据教学进度对每单元教学内容进行测试,做好试卷分析,查找问题。大面积存在的问题在进行试卷讲解时要重点进行分析讲解,力求透彻。

7.搞好阅卷分析。在条件许可的情况下,尽可能采用当面批改的方式对学生作业进行批阅,指出学生作业中存在的问题,并进行分析、讲解,帮助学生解决存在的知识性错误。

初二数学人教版上册教案 篇6

教学目标:

知识与技能

1.掌握直角三角形的判别条件,并能进行简单应用;

2.进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.

3.会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

情感态度与价值观

敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.

教学重点

运用身边熟悉的事物,从多种角度发展数感,会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.

教学难点

会辨析哪些问题应用哪个结论.

课前准备

标有单位长度的细绳、三角板、量角器、题篇

教学过程:

复习引入:

请学生复述勾股定理;使用勾股定理的前提条件是什么?

已知△ABC的两边AB=5,AC=12,则BC=13对吗?

创设问题情景:由课前准备好的一组学生以小品的形式演示教材第9页古埃及造直角的方法.

这样做得到的是一个直角三角形吗?

提出课题:能得到直角三角形吗

讲授新课:

⒈、如何来判断?(用直角三角板检验)

这个三角形的三边分别是多少?(一份视为1)它们之间存在着怎样的关系?

就是说,如果三角形的三边为,,,请猜想在什么条件下,以这三边组成的三角形是直角三角形?(当满足较小两边的平方和等于较大边的平方时)

⒉、继续尝试:下面的'三组数分别是一个三角形的三边长a,b,c:

5,12,13;6,8,10;8,15,17.

(1)这三组数都满足a2+b2=c2吗?

(2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?

⒊、直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

满足a2+b2=c2的三个正整数,称为勾股数.

⒋例1一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?

随堂练习:

⒈、下列几组数能否作为直角三角形的三边长?说说你的理由.

⑴9,12,15;⑵15,36,39;

⑶12,35,36;⑷12,18,22.

⒉、已知?ABC中BC=41,AC=40,AB=9,则此三角形为_______三角形,______是角.

⒊、四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.

⒋、习题1.3

课堂小结:

⒈直角三角形判定定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.

⒉满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.

相关推荐

  • 初二数学教学工作总结 时光荏苒,光阴荏苒,这一阶段的工作结束了,上阶段的工作就这样完成了,我们在新一阶段工作来临前对这个阶段的工作做个总结。总结是理论的升华,是对前一阶段工作的经验、教训的分析研究,工作总结分为哪几个部分?也许下面的“初二数学教学工作总结”正合你意!供你参考和使用,请收藏和分享。一、加强师德修养,提高道德...
    2024-06-11 阅读全文
  • 初中数学教案 俗话说,磨刀不误砍柴工。幼儿园的老师都想教学工作能使小朋友们学到知识,大部分的教案都是为了让学生的学习效率得到提升,教案有助于老师在之后的上课教学中井然有序的进行。优秀有创意的幼儿园教案要怎样写呢?以下是小编精心收集整理的初中数学教案,带给大家。请收藏并分享给你的朋友们吧!教材分析立体图形的翻折问题...
    2023-04-15 阅读全文
  • 初中数学二元一次方程组教案 作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。初中数学二元一次方程组教案 篇1二元一次方程组是一元一次方程教学的延续与深化。很多一元一次...
    2024-09-28 阅读全文
  • 2024初二年级数学教案(优选11篇) 数学是一门研究数量、结构、变化以及空间关系等概念和规律的学科。以下是小编为大家整理的2024年初二数学新学期教学计划(精选11篇),欢迎阅读,希望大家能够喜欢。2024初二年级数学教案 篇1在这秋高气爽的日子,我们又迎来了新的学期,本学期我代初二118、119两个班的数学,现制定本学期教学工...
    2024-09-10 阅读全文
  • 初二数学教师工作总结 时光匆匆,总在不经意的瞬间便悄然远去,上个阶段的工作结束了,我们要好好总结一下这段时间的工作,工作总结,集中的反映了某项工作的完成情况。你会为了写不出总结而发愁吗?小编收集并整理了“初二数学教师工作总结”,更多信息请继续关注我们的网站。本学期,本人担任八年级两个班数学学科的教学工作。一学期来,本人以...
    2023-10-29 阅读全文

时光荏苒,光阴荏苒,这一阶段的工作结束了,上阶段的工作就这样完成了,我们在新一阶段工作来临前对这个阶段的工作做个总结。总结是理论的升华,是对前一阶段工作的经验、教训的分析研究,工作总结分为哪几个部分?也许下面的“初二数学教学工作总结”正合你意!供你参考和使用,请收藏和分享。一、加强师德修养,提高道德...

2024-06-11 阅读全文

俗话说,磨刀不误砍柴工。幼儿园的老师都想教学工作能使小朋友们学到知识,大部分的教案都是为了让学生的学习效率得到提升,教案有助于老师在之后的上课教学中井然有序的进行。优秀有创意的幼儿园教案要怎样写呢?以下是小编精心收集整理的初中数学教案,带给大家。请收藏并分享给你的朋友们吧!教材分析立体图形的翻折问题...

2023-04-15 阅读全文

作为一名教职工,时常要开展教学设计的准备工作,借助教学设计可以提高教学质量,收到预期的教学效果。教学设计应该怎么写呢?以下是小编收集整理的二元一次方程组教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。初中数学二元一次方程组教案 篇1二元一次方程组是一元一次方程教学的延续与深化。很多一元一次...

2024-09-28 阅读全文

数学是一门研究数量、结构、变化以及空间关系等概念和规律的学科。以下是小编为大家整理的2024年初二数学新学期教学计划(精选11篇),欢迎阅读,希望大家能够喜欢。2024初二年级数学教案 篇1在这秋高气爽的日子,我们又迎来了新的学期,本学期我代初二118、119两个班的数学,现制定本学期教学工...

2024-09-10 阅读全文

时光匆匆,总在不经意的瞬间便悄然远去,上个阶段的工作结束了,我们要好好总结一下这段时间的工作,工作总结,集中的反映了某项工作的完成情况。你会为了写不出总结而发愁吗?小编收集并整理了“初二数学教师工作总结”,更多信息请继续关注我们的网站。本学期,本人担任八年级两个班数学学科的教学工作。一学期来,本人以...

2023-10-29 阅读全文
Baidu
map