三角形
发布时间:2019-12-12 幼儿园认识三角形说课稿 幼儿园游戏角 幼儿园区角活动方案 活动目标:1、通过认识、操作和游戏活动,使幼儿初步了解三角形的基本特征,激发幼儿对图形的兴趣,并学会目测分类。
2、发展幼儿的手工操作能力和思维的敏捷性。。
活动准备:1、三角形教具、三角形拼图学具人手一套,圆形、三角形、正方形的头饰每人一个,相应的实物若干。
2、运用三角形、圆形和正方形等几何图形组成画布置,用几何图形积木作幼儿的椅
子。
活动组织:
1、出示三角形平面娃娃,引导幼儿学习兴趣,指导幼儿观察、分析,启发幼儿说出并记住图形名称和基本特征。
2、请大班幼儿扮演三角形娃娃,由他向大家介绍自己的朋友(形状与三角形相同的实物),然后让幼儿帮助三角形娃娃找朋友,巩固对三角形的认识。
3、出示用三角形拼成的各种物体,引导幼儿观察这些物体是哪些几何图形组成的。
4、用大小不同的三角形拼成各种图案,鼓励幼儿大胆想象,并粘在作业纸上,然后把作品挂在活动室里作装饰,教师和幼儿一起欣赏。[迷你日记网 WWW.W286.com]
活动延伸:鼓励幼儿回家以后用小棍继续练习拼图。
YJS21.cOm更多幼儿园教案小编推荐
三角形内角和教案汇总
“三角形内角和教案”教案课件是老师教学工作的起始环节,也是上好课的先决条件,每位老师应该设计好自己的教案课件。写好教案课件,可以避免重要内容被遗忘,大家是不是担心写不好教案课件?为满足你的需求,栏目小编特别编辑了“三角形内角和教案”,自信能够帮助你找到适合自己的内容!
三角形内角和教案 篇1
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和教案 篇2
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)
(4)汇报结论(清楚明白的给小组加优秀10分)
5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、
(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
(3)等边三角形的3个内角都是()。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。
(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。
2、判断
(1)一个三角形中最多有两个直角。()
(2)锐角三角形任意两个内角的和大于90。()
(3)有一个角是60的等腰三角形不一定是等边三角形。()
(4)三角形任意两个内角的和都大于第三个内角。()
(5)直角三角形中的两个锐角的和等于90。()
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
三角形内角和教案 篇3
《义务教育课程标准实验教科书数学(人教版)》四年级下册第五单元第85页
1、透过“量一量”,“算一算”,“拼一拼”,“折一折”的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、透过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想.
3、透过数学活动使学生获得成功的体验,增强自信心.培养学生的创新意识,探索精神和实践潜力.
多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
此刻正是春暖花开,万物复苏的季节。在这完美的日子里,我们相聚在那里,刘老师十分高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
师:这节课我们一齐来研究三角形的内角和。(板书:三角形的内角和)
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
师:大家明白了什么是三角形的内角,那什么叫“内角和”呢?
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180o,但这仅仅是我们的一种猜测,有了猜测就能够下结论了吗?我们还需要进一步的验证.
刘老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮忙你想出好办法。每人此刻都认真的想一想,你打算怎样来验证三角形的内角和不是180o呢?
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
师:来吧孩子们,该到全班交流的时候了.谁愿意先把自己的方法与大家一齐分享。
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎样原因呢?
师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎样想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一齐的三个角,透过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,明白吗?数学家在证明这一猜想时,也用了转化的思想,一齐来看(看课件)
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,刘老师为大家感到骄傲。
明白了这个结论能够帮忙我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:当把两个三角形拼在一齐时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
在一个三角形ABC中,已知A45°,B85o,求с的度数。
在一个直角三角形中,已知с52o,求Α的度数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
这天我们收获的不仅仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
【总评】整节课刘老师透过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体此刻以下几个方面:
1、精心设计学习活动,让每一个学生经历知识构成的过程。刘老师为学生带给了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作潜力、推理归纳潜力,实现学生对知识的主动建构。
2、立足长远,注重长效,不仅仅关注知识和潜力目标的落实,更注重数学思想方法的渗透。在验证三角形内角和是180度的过程中,教师有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。本节课上,刘老师延伸了教材,介绍了科学验证三角形内角和的方法以及这一结论的发现者帕斯卡的故事,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生用心向上的学习情感。
整节课的学习资料,突出了数学学科的实质,抓住了数学的本质,使学生在动手“做”数学的过程中寻求成功,在成功中享受快乐,在快乐中不断超越,在超越中体验成长.
三角形内角和教案 篇4
《三角形的内角和是180°》教学设计
教学思路:
由在数学王国里,锐角、直角、钝角三角形内角和大小的争论,引出什么是内角与内角和,并开始讨论内角和的大小。引导学生经历对三个内角的度量,剪拼,折叠等方法的探索,引导学生推测出三角形的内角和是180°。
学生通过度量的方法得出三角形的内角和大约是180°(存在误差),为了让结论更具说服力,再引导学生通过剪拼等的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,培养学生科学试验的态度,培养学生的统计观念。接着向学生渗透数学文化。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。整堂课让学生通过小组合作学习,经历探究知识的过程,明白解决问题策略的多样化。培养学生的空间观念,发展合情推理能力和初步的演绎推理能力,让学生体验数学学习的快乐。
教学目标:
1、知识技能目标:
(1)理解和掌握三角形的内角和是180°;
(2)运用三角形的内角和知识解决实际问题和拓展性问题;
2、能力技能目标:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感与态度目标:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。教学重难点
重点:理解掌握三角形的内角和是180°。
难点:运用三角形的内角和知识解决实际问题。教具、学具准备:
教具:教学课件、硬纸片制作的各种三角形、三角尺。学具:直角三角形、锐角三角形和钝角三角形各一个,量角器、两个三角板。
教学过程:
一、创设情境 生成问题
(一)课件出示三角形争吵图
在数学王国里住着很多平面图形。一天三角形兄弟忽然吵了起来,直角三角形说我的个头最大所以我的内角和一定最大,钝角三角形说我有一个钝角所以我的内角和一定比你们的大,只有锐角三角形很没自信的说:难道只有我的内角和最小?
(二)猜想什么是三角形的内角和
师:他们三个在比什么呀?什么是三角形的内角?什么是三角形的内角和?
课件演示三角形的内角(内角和)
二、探索交流 解决问题
(一)探究猜想内角和的度数
师:同学们来当小裁判,评一评他们三个谁的内角和最大?不过怎样才能知道三角形的内角和呢?
生:用量角器进行度量。
师:四人小组合作,用手中的量角器量出三个不同三角形的内角和。通过小组合作后交流,汇报。
生回答。(回答可能不一样。)
师:同学们通过刚才的汇报你有什么想说的吗?
生:我发现内角和的度数不一样。
师:是啊,什么原因呢?
生:可能是量的时候出现了差错。
师:是的,在度量时由于测量的误差很容易导致最后的结果出现差错,但你们有没有发现,这些数据都是在180°左右哦。(引导学生推测出三角形的内角和可能都是180°。)同学们要想当好一个裁判除了要公平公正还要有足够的证据,怎样才能让他们三个心服口服?你有办法来验证三角形的内角和是180度吗?
板书课题:三角形的内角和
(二)讨论验证方法
以小组为单位来想一想我们可以怎么样来验证?
小组活动后汇报,老师要提醒学生在撕角之前做好三角形各个角的标记,以防拼错。(可写上1,2,3)
(三)动手验证
生活动,师巡视
(四)汇报
师:哪个小组来汇报你们的验证方法和验证结论?
组1:我们用的是撕的方法,把锐角三角形的三个角都撕下来,然后拼在一起就拼成了一个平角。结论是锐角三角形的内角和是180度。
师:这个小组很厉害,运用了平角的知识来验证的。哪个小组也用了这种撕拼的方法?
组2:我们也是用撕拼的方法验证了钝角三角形的内角和是180度。
组3:我们用这种撕拼的方法验证直角三角形的内角和也是180度。
哪个小组的同学最想上来展示一下你们的研究成果?
师:同学们做得很好,看来用撕拼的方法验证了三角形的内角和确实是180度。老师也尝试用你们的方法来验证一下直角三角形的内角和,不过我不像你们那么简单粗暴,我喜欢温柔的——剪拼,同学们想不想看?
(动画演示剪拼验证过程)
边演示边解说。
见证奇迹的时刻到了,你发现了什么?
师:嗯,很独特的方法,不但验证了三角形的内角和是180度,还知道了直角三角形的两个锐角之和是90度。
课件演示独特折法
同学们还有不同的验证方法吗?
组:我们用的是折一折的方法,把锐角三角形的三个内角向里折,也拼成了一个平角,结论:锐角三角形的内角和是180度。
组::我们用的是折一折的方法,把钝角三角形的三个内角向里折,也拼成了一个平角,结论:钝角三角形的内角和是180度。
出示:普通折法
师:还有不同折法吗?
组:我们还可以这样折,把直角三角形的内角向里折。把直角三角形的两个锐角转化成一个直角。这样验证出:直角三角形的内角和是180度。
师:刚才有几个小组完成的很快所以老师又送了他们几个长方形。看到长方形你们想到了什么?你们能根据手里的长方形想出其他方法验证三角形的内角和是180度吗?
组:我们认为一个长方形的内角和是360度,把他沿着对角线撕开就得到了两个完全一样的直角三角形,360除以2等于180度。结论直角三角形的内角和是180度。
师提出一个疑问:是不是两个完全一样的三角形都能拼成一个长方形?
课件演示长方形推理法。
师:刚才我们用已知的长方形的内角和验证了直角三角形的内角和是180度。
看来当我们遇见一个新问题时可以联想一下以前学过的知识,这样新问题就会很快解决,这种转化法是学习数学的一种很重要的方法希望同学们以后大胆应用。
小结:通过咱们刚才量一量,折一折,撕一撕等方法的验证可以得出一个什么样的共同结论,(全班小结:三角形的内角和是180度)师板书:三角形的内角和是180.师:现在你对这个结论还有丝毫的质疑吗?好,就让我们用自信而骄傲的语调读出我们的验证结论。
三、巩固应用 内化提高
同学们你们能用这个新知识来解决问题吗?那现在我们一同来闯关吧!
1、根据已知角的度数求出未知角的度数
(着重让学生说说自己的想法:从而总结出内角和减去已知角的度数就等于未知角的度数)
2、求等边三角形各内角的度数
3、已知直角三角形的一个锐角是40度求另一个锐角的度数(提示两种方法,90度减去40度等于50度)
4、放风筝:
同学们又是一年三月三风筝飞满天,想去放风筝吗?在放风筝之前老师需要同学们进行一次挑战敢吗?
一个等腰三角形的风筝一个底角是70度,求顶角的度数?
5、挑战极限:
同学们的挑战精神老师分佩服,老师也进行了一次挑战可是失败了,你能帮助老师吗?
根据三角形的内角和是180度的知识求出四、五边形的内角和是多少?
四、回顾整理反思提升
同学们通过这节的学习你有哪些收获?
三角形内角和教案 篇5
一堂成功的课不仅要熟悉教材,还需要我们充分的了解学生的特点。
本节课的授课对象是四年级的学生,从心理特征来说,他们对于新鲜的知识充满着好奇心和强烈的求知欲望,无意注意仍起着主要作用,有意注意正在发展。
从认知状况来说,学生在此之前已经学习了三角形有关的知识,对三角形的内角已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于三角形内角和都是180度的理解,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
三、说教学目标
根据新课程标准,教材特点、学生实际,我确定了如下三维教学目标。
【知识与技能】通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
【情感态度与价值观】在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
根据学生现有的知识储备和知识点本身的难易程度,学生很难建构知识点之间的联系,这也确定了本节课的重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
新课程明确倡导动手实践,自主探索、合作交流的学习方式,教师不仅是知识的传授者,更是学生探究性、合作性学习活动的设计者,组织者和学生学习的伙伴。在教学过程中,我将采用创设情境,直观演示,观察,猜测,操作,思考,总结等方法,把学生带进开放的,富有挑战性的问题情景,让学生通过自己学习,合作学习,和交流等活动,获得知识与能力,掌握解决问题的方法,获得积极的情感体验。整个学习和探索活动,体现出开放性思维和多元思维并存的思维方式,教学生初步学会自主梳理知识,探索知识的方法,使他们亲历自主探究的过程。
首先是导入环节,我会多媒体课件播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。
根据视频中三角形的对话,顺势引出题目——三角形的内角和。
设计意图:在这个环节中,多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
接下里是新课探究环节,在这一教学环节中,我首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。最后引导学生总结出三角形的内角和是180°。
此环节通过小组合作,体现以生为本的教学理念。既培养学生的推理能力,又锻炼学生的语言表达能力和沟通能力。
接下来进入巩固提高环节。本环节我依据教学目标和学生在学习中存在的问题,设计有针对性、层次分明的练习题组。让学生在解决这些问题的过程中,进一步理解、巩固新知,训练思维的灵活性、敏捷性、创造性,使学生的创新精神和实践能力得到进一步提高。
练习题组设计如下:
第二题把这两个完全一样的直角三角形拼组在一起,得到的新三角形的内角和是多少度?
设计意图:通过各种形式的练习,进一步提高学生学习兴趣,使学生的认知结构更加完善。同时强化本课的教学重点,突破教学难点。
在小结环节,我会引导学生同桌之间以“你问我答”的形式回顾本节课所学的主要内容,这节课你都学习了哪些内容?三角形内角和定理的推导过程体现了哪种数学思想方法?
这样设计的目的是让学生在回顾课堂经历的基础上,以相互交流、相互启发的方式总结自己的收获,教师通过概括性引导提升学生对三角形的内角和定理的认识
在作业环节,我会让学生利用本节课所学的知识,思考一下四边形的内角和是多少度?
这样设计的意图是学生在学习本节课内容的基础上,进一步对本节课的一个延伸,拓展学生的思维。
为了让学生对本节课的学习形成清晰的思路,同时还有利于学生系统性地记忆新知。我的板书设计如下。
三角形内角和教案 篇6
教学目的:
1、学生通过量、折、拼、剪、摆等操作学具活动,找到新旧知识之间的联系,主动掌握三角形内角和是180°,并运用所学知识解决问题。
2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。在应用三角形内角和知识解决问题的过程中促进学生数学思维发展。
3、让学生在探究数学的过程中体验发现的乐趣,增强学好数学的信心。
教学重点:
让学生探究猜想并验证三角形内角和等于180°。
教学难点:
理解所有三角形的内角之和都是180°。
教学准备:
不同类型的三角形纸片,剪刀,量角器。
教学过程:
一、复习旧知,提示课题
1、一个平角是多少度?1个平角等于几个直角?
2、长方形有什么特征?(生汇报:长方形对边相等,有4个角,4个角都是直角)
3、三角形按角分可分成几类?
4、引出内角的概念,我们把图形里面的角叫做内角。三角形有几个内角?三角形三个内角的度数和叫做三角形的内角和。今天我们一起来研究三角形的内角和。(板书课题:三角形的内角和)
设计意图:学生对数学知识的学习,在很多时候都是对已有数学知识的延伸和发展。本节课,我充分认识到学生已有知识对新知的铺垫和孕伏作用,设计了三道复习题,把角的度数,长方形的特征,三角形的分类这些原本零散的数学知识纳入到一个整体,让旧知的复习、新知的孕伏和引入有机的结合起来。
二、创设情境,大胆猜想
1、长方形的内角和是多少度?为什么?如果沿长方形的一条对角线剪开,长方形就变成了两个什么图形?
2、出示三个三角形,说一说分别属于哪一类?(板书:锐角三角形 直角三角形 钝角三角形),判断这三个三角形的内角和谁大?为什么?(板书:内角和)
3、你猜三角形的内角和是多少度?(板书:是180°)
设计意图:数学教学最为重要的是要培养学生对数学的感觉,给学生一双数学的眼睛,由于学生已经知道长方形的内角和是360°,抓住时机,要求学生猜一猜三角形的内角和是多少度,以此培养学生的探索精神和创新意识。
三、动手操作,探究验证。
1、小组合作。
同学们能够用什么方法来验证三角形的内角和是180°,请同学们小组合作,充分利用你们的学具进行验证,比一比哪些组的方法多而且又富有新意,开始!
2、汇报交流。
谁愿意来给大家介绍你们小组是用什么方法来验证三角形的内角和是180°的?
量一量:
生:我们小组的方法是用量角器测量出三个内角的度数,再求出它们的和。
师:你们的方法是分别测量三个内角的度数,那你们测量的三个内角的度数分别是多少?(生汇报时吩咐学生记录下来并算出内角和)你觉得这个小组的方法怎样?(抽生评价)这种方法可出现误差吗?为什么?(生回答)
师:能不能因此否定我们刚才的猜想呢?还有不同的方法吗?
折一折:
生:我们是通过折一折的方法得出结论的。(边说边演示)。我将直角三角形的两个锐角折向直角,三个顶点重合,我发现两个锐角正好组成了一个直角,再加上直角,它的内角和是180°,所以我得出结论:直角三角形的内角和是 180°。
生:我拿一个锐角三角形,把上面的角沿虚线横折,使它的点落到底边上,再将剩下的两个角横折过来,使三个角正好拼在一起,这三个角组成了一个平角,所以我得出结论:锐角三角形的内角和是 180°。
生:我拿一个钝角三角形,用同样的方法去折,发现钝角三角形的三个角也正好拼在一起组成一个平角,所以我得出结论:钝角三角形的内角和是 180°。
生:直角三角形的三个角也可以用同样的方法折拼成一个平角。
师:真是心灵手巧的孩子,让我们把掌声送给他们!动脑筋的同学真多,请你说。
拼一拼:
生:我发现两个直角三角形正好可以拼成一个长方形,长方形的四个角都是直角,所以,长方形的内角和是 360°。再除以2,就得到直角三角形的内角和是180°。
师:能从不同的角度去思考问题,你真棒!
剪一剪,摆一摆:
生:我们将每个三角形的三个角都剪下来,再把每个三角形的三个角的顶点重合,发现每个三角形的三个角都组成了一个平角,这就证明了三角形的内角和是180°。
师:你们只验证了三个三角形,为什么从中能得出“三角形的内角和是180°”的结论呢?
生:因为三角形按角分可以分为三类,钝角三角形,直角三角形和锐角三角形。我们已经通过各种的方法证明了这三种类型的三角形的内角和是180°,所以可以得出“三角形的内角和是180°”的结论。
师:说得真好,我们给他鼓掌。
师概括小结。:刚才同学们用量、折、拼、计算、推理、剪等这么多巧妙的方法得出,无论是什么样的三角形的内角和都是180°,(师手指课题)你们真不错,我为你们成功的学习表示衷心祝贺,让我们带着自豪的语气大声地读出“三角形的内角和是180°”。
设计意图:新课标注重学生三维目标的培养,在这里,我要求学生用自己的方法进行验证,把知识的学习与情感态度价值观的培养融为一体,无疑有效地培养了学生科学的态度。小组合作是课程改革所倡导的一种学习方式,本节课,我立足于学生的创新意识和实践能力的培养,把学习的时空还给学生,大胆地开展小组合作学习,使学生通过量、折、拼、剪、摆等操作学具活动主动掌握三角形内角和是180°,同时学生的发散思维也能得到有效培养。
四、实践应用,解决问题
1、那么同学们能不能根据三角形的内角和是180°求出三角形中任意一个角的度数,请完成书85页上“做一做”。
2、请完成书88页第9题
(提示:这一题只知道一个角的度数,另一个角是多少度,从哪看出来的?直角三角形中的一个锐角还可以怎样算?)
3、请完成书88页第10题
设计意图:“解决问题”,按学生的认知水平,是在感知、理解、掌握知识后,认知水平得已体现的最高层次。最后让学生运用结论解决实际问题,为学生把知识转化为能力起到积极的促进作用。
五、拓展延伸,活用新知
现在老师手中有一个三角形,我一刀把它剪成两个图形,你猜这两个会是什么图形,它们的内角和是多少度?
把刚才的四边形剪去一个角,得到一个五边形,它的内角和是多少度?
继续剪掉一个角,得到一个六边形,它的内角和是多少度?你发现有什么规律吗?
(学生猜测→动手操作→计算内角和→归纳多边形内角和计算公式)
六、课堂小结,内化知识
今天,你有什么收获?
板书设计:
锐角三角形
因为 直角三角形 内角和是180°
钝角三角形
所以 三角形的内角和是180°
三角形内角和教案 篇7
【教材分析】
《三角形内角和》是北师大版《数学》四年级下册的内容。是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。教材还安排了“试一试”,“练一练”的内容。已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】
经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的微机操作。
【学习目标】
知识目标:掌握三角形内角和是180度这一规律,并能实际应用。
能力目标: 培养学生主动探索、动手操作的能力。培养学生收集、整理、归纳信息的能力。使学生养成良好的合作习惯。
情感目标: 让学生体会几何图形内在的结构美。
【教学过程】
一、 情景激趣,质疑猜想。
播放动画片:在图形王国中,有一天三角形大家庭里为“三角形内角和的大小”爆发了一场激烈的争吵。
钝角三角形大声叫着:“我的钝角大,我的内角和一定比你们的内角和大。”锐角三角形也不示弱:“我的锐角虽然比钝角小,但我的内角和并不比你小。”直角三角形说:“别争了,三角形的内角和都是180°。我们的内角和是一样大的。”
师:想一想,什么是三角形的三个内角的和。
生:三角形的三个内角的度数和。
师:同学们刚才看了动画片你们知道谁说对了吗?不知道的话想一想,猜一猜谁说的对?
学生进行猜想,自由发言。
(设计意图:教师借助多媒体技术创设问题情境,架起数学学习与现实生活,抽象数学与具体问题之间的桥梁,激发了学生的学习兴趣。鼓励学生主动质疑猜想是培养学生学会学习的重要途径。)
二、自主探究,验证猜想
师:刚才大部分同学都猜直角三角形说的对。三角形的三个内角的和都是 180°,你能设法验证这个猜想吗?
生1:能。我量出三角形的三个内角和度数,加起来是否接近180°(量的时候可能会有些误差)。
生2:我把三角形的三个角剪下来拼一拼是否能拼成一个平角。
生3:我把三角形的三个角撕下来,拼一拼是否180°。
生4:我把三角形的三个角往里折,看一看这三个角是否折成一个平角。
……
师:上面你们说了不少的验证猜想的方法,请大家用准备好的材料用你喜欢的方法,动手验证自己的猜想吧!(学生把三角形的三个内角分别标上∠1、∠2、∠3,以免在剪拼时把内角搞混了。)
学生边实验边整理信息,完成实验报告单后,学习小组内进行交流讨论。
(设计意图:验证猜想为学生提供了“做数学”的机会,让每个学生围绕自己的猜想、决定自己的探索方向、选择自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,让学生在操作中自主探究数学知识的产生发展过程。验证自己的猜想,鼓励学生用不同的方法进行验证,促进学生创新能力的发展。)
三、交流评价,归纳结论。
学生操作验证,完成实验报告单后,利用投影仪展示学生填写的实验报告单。
实验报告单
实验名称
三角形内角和
实验目的
探究三角形内角和是多少度。
实验材料
尺子
剪刀
量角器
锐角三角形纸片
直角三角形纸片
钝角三角形纸片
我的方法
我的发现
我的表现
自评
互评
学生在展示过程中,充分交流和讨论实验中各自使用的方法和发现,教师要对学生的闪光点及时进行表扬和鼓励。
师生共同归纳,得出结论:
三角形内角和等于180°
(设计意图:各学习小组汇报自己的验证过程,展示探究的成果。对学生探索发现的方法、策略进行总结归纳,集思广益,取长补短达到共识。在交流、归纳过程中,及时肯定其中的闪光点给予表扬和鼓励,使他们体验到成功的愉悦,促使他们获得更大的成功。)
四、分层练习,巩固创新。
①课件出示:
师:这个三角形是什么三角形?知道几个内角的度数?
生:直角三角形,知道一个角是30°,还有一个角是90°。∠A=90°-30°=60°。
师:根据今天所学的知识,谁能求出A的度数?大家自己试一试。
学生做完后反馈讲评时让学生说说自己的方法。
生1:用三角形内角的和(180°)减去30°再减去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°减去120°也可得∠A =60°。
②学生完成完成P29的第一题。
引导学生按照前面的方法独立完成,教师巡视,集体订正。
③猜一猜三角形的另外两个角可能各是多少度。
同桌同学互相说一说。(答案不唯一)
④小组操作探究活动。
让学生剪出几个不同的四边形,按表中所给的方法以做一做,并填一填。
方 法
四边形内角和
用量角器量出每个内角的度数,并相加。
把四边形四个角剪下来,拼在一起。
把四边形分为两个三角形。
填表后让学生想一想、互相说一说,四边形内角和是多少度?
(设计意图:引导学生将探究学习活动中所获得的结论经验和方法运用于探索解决简单的实际问题。组织学生参与具有趣味性、操作性和开放性的练习活动,让学生在巩固练习中培养动手能力、实践能力和创新思维。)
三角形内角和教案 篇8
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学重点:
了解三角形三个内角的度数。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
课件三角形若干量角器剪刀。
教材与学生
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
教学过程:
一、呈现真实状态。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(3)全班交流。由小组汇报测出结果(三角形内角和)
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
师引导提问:三角形的内角和会不会就是180呢?
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(3)把你没有想到的方法动手做一次
(使学生更直观地理解三角形的内角和是180的证明过程)
(4)根据学生的反馈情况教师进行操作演示。
(二)教师演示
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
2、师:这三个内角放在一起你有什么发现?
生:发现三个内角拼成一个平角。
师:平角是多少度呢?说明什么?
生:180?说明三个内角和刚好等于180。
师:这种方法是不是适用各种三角形呢?
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
在学生完成这一实践后肯定这一发现
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
2、想一想:钝角三角形最多有几个钝角?为什么?
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
五、总结延伸
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案 篇9
一、教学目标:
1、通过小组猜想、探索、验证三角形的内角和等于180°,并能运用知识解决简单问题。
2、经历三角形内角和的探究过程,体验“猜想——验证——应用”的学习模式。
3、通过各种实践活动,激发学习兴趣,体验学习成功感,并在教学中,感受数学与生活的密切联系。
二、教学重难点
教学重点:学生运用各种方法,探索三角形的内角和是180度这一知识的全过程
教学难点:运用三角形的内角和解决实际问题。
三、教具、学具准备:
课件、一副三角尺、几个三角形。学生准备一副三角尺。
四、教学过程:
一、创设情境 揭示课题。
师:猜谜语 形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)生:三角形
师:前面我们已经认识三角形,谁能给大家介绍一下? 学生讲学过的三角形知识。分类
师:我们在讨论三角形知识的时候,三角形中的三个兄弟却吵了起来,想知道怎么回事吗?让我们一起去看看吧!
师:呦,瞧,三个兄弟在争论呢。(播放课件)它们在争论什么呀? 生:它们在争论谁的内角和大。
师:哦,原来如此。那么,你们知道什么是三角形的内角? 三角形的内角和又是指什么吗?(生:三角形的内角就是三角形里面的三个角。内角和就是三个内角的度数和。)
师:这个同学说得真好,(课件)我们把三角形里面的这三个角,就叫做三角形的内角,而这三个角的度数和,我们就称为三角形的内角和。
今天我们就来研究有关三角形内角和的知识。(板书课题)
二、探索交流,解决问
(一)、大胆猜想,产生分歧
师:理解了三角形的内角和,那请你们给评评理:这三个大小不一样的三角形,到底是谁的内角和大啊?(这位同学手举得最高,请你来说。)
生1:我认为是这样的,因为大三角形大,所以它的内角和更大。(哦,你是这样认为的,请坐。还有不同意见吗?这位同学很着急,好,你来。)
生2:我不同意,我认为两个三角形内角和的度数都是一样的。(很好,这是你的想法。还有同学想说,你来。)
生3:当然是大三角形的内角和大了。(你回答的声音真响亮。请坐)生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?
(二)验证猜想,解决问题
师拿出两个三角尺,问:它们是什么三角形? 生:直角三角形。
师:请大家拿出自己的两个三角尺,同桌之间说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的3个角的和都是180°)
师:你们算出来,这两个三角尺的内角和是多少度啊? 生齐:180°。
师:那„„其他三角形的内角和也是180°吗?(这位同学手举得真端正,你来说。)生1:其他三角形的内角和也是180°(好,还有谁想说?)生2:其他三角形的内角和不是180°
师:看来呀,大家都有不同的看法。我们学过三角形的分类,知道直角、锐角、钝角三角形可以代表所有的三角形。那下面就请同学们小组合作,从组里找出这
三类三角形,量一量每个三角形内角的度数,并求出它们的内角和,把结果填在表格里。(板书:测量)师:你们发现了什么?
生1:通过测量我们发现每个三角形的内角和都是180°。生2:不对,应该是180°左右,因为我们组算出来也有175°的。
师:噢!是呀,因为我们在测量时可能会出现一些误差,所以测量出的结果不是很准确,因此我们只能猜测三角形的内角和可能是180°。
师:那么,同学们能发挥你们的聪明才智,通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考一下,再在小组内把你的想法与同伴进行交流,然后每组选一种方法进行验证,看哪组最先发现其中的“奥秘”。(1)小组合作,讨论验证方法(2)汇报验证方法、结果。
师:谁愿意第一个向大家介绍你们组的验证方法?
组1:我们小组是用剪拼的方法(板书:剪拼),将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。(投影仪)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看大屏幕,老师在电脑里把刚才剪拼的过程重播一遍。你们看,成功了,3个角拼成了一个平角。可是,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢,它们能不能拼成一个平角啊? 生齐:能!
师:好。那就是说,刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°了。你们觉得这种方法好不好啊?那我们把掌声送给刚才这个小组。还有其他方法吗?
组2:我们小组是用折的方法(板书:折图),同样得到三角形的内角和是180度。(这个小组真了不起,竟能想出如此独特的方法,很有新意,非常好!)师:听起来有点抽象,请这位同学上来折给大家看看好不好呀?(投影仪展示)
(展示:3个角折成了一个平角。)
师:真是个手巧的孩子。不过呢,他刚才折的是一个直角三角形,那其他两类三角形呢,是不是也能折出平角呢,谁来告诉大家?
组3:可以,这三类三角形都能折出平角。(这一组探索数学的能力也真棒!)师小结:刚才同学们用量、剪、拼、折等方法证明了,无论是什么样的三角形,内角和都是1800,(板书:三角形的内角和是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。师:(出示一个大三角形)它的内角和是多少度? 生:180 °
师:(出示一个很小的三角形)它呢? 生:180 °
师:一个三角形的内角和是180°,那两个同样的三角形拼成一个大三角形,它的内角和又是多少呢?
(生有的答360°,有的180 °。)
师:咦?有两种不同的声音哦。那到底哪一种是正确的呢?
师:(学生个个脸上露出疑问)大家可以在小组内拼一拼,并讨论讨论。(经过一翻激烈的讨论探究后,学生开始举手回答。)
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。(想一想,做一做,数学之门就被这组同学打开了,真棒!哈,还有同学要说,好,你再说。)
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:你分析问题这么透彻,老师真希望每节课都能听到你的发言。现在,老师把刚才这位同学说的用课件演示一遍,注意看哦。(课件演示)
师:好,这个问题解决了。那么,把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度? 生齐:180°。
师:哈,看来已经骗不倒我们班的同学勒。答案还是180°,不是90°哦。师总结:所以说,三角形不论位置、大小、形状如何,它的内角和总是180°
三、巩固应用,内化提高
1、解决问题:
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。(课件演示练习题)(1)在能组成三角形的三个角后面画“√”(2)判断下列说法对吗?(3)你能求出被遮住的角吗?(4)67页的做一做。(5)你会求下面图形的角吗?
四、回顾整理,反思提升
通过今天的学习,大家有什么收获?
拓展创新
小明不小心将镜框上的一块三角形玻璃摔成了两半,玻璃裂成了两块。一块只有原来的一个角,另一块有原来的两个角。他想重新买一块玻璃安上,小明非常聪明,只带了其中的一块到玻璃店去,就配到了和原来一模一样的玻璃了。你知道他带的是哪一块吗?
三角形内角和教案 篇10
探索与发现:三角形内角和
课型
新授课
设计说明
本节课是在学生已经掌握了钝角、锐角、直角、平角及三角形分类的基础上,让学生通过直观操作来认识和学习的。
1.重视知识的探究与发现。
在教学中,概念的形成没有直接给出,而是整节课都是在引导学生的实验操作、活动探究中进行。在探究活动中,不但重视知识的形成过程,而且注意留给学生充分进行主动探究和交流的空间,让学生归纳出三角形内角和等于180°。
2.重视学生的合作探究学习。
使学生能够积极主动地参与到数学活动中,能在实践中感知、发表自己的见解,学生感受到通过自己的努力取得成功所带来的满足感,同时也培养了学生的探究能力和创新能力。
课前准备
教师准备:PPT课件 量角器 直尺 三角尺
学生准备:量角器 三角尺
教学过程
一、常识导入。(3分钟)
1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。
2.导入新课:这节课我们也来验证一下三角形的内角和。
1.倾听教师的介绍,了解帕斯卡。
2.明确本节课的学习内容。
1.填空。
(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。
(2)平角=( )°
直角=( )°
周角=( )°
二、合作交流,探究新知。(18分钟)
(一)量算法。
1.探究特殊三角形的内角和。
(1)出示一副三角尺,引导学生说一说各个角的度数。
(2)引导学生算一算它们的内角和各是多少度。
(3)引导学生得出结论。
2.探究一般三角形的内角和。
(1)引导学生猜一猜其他三角形的内角和是多少度。
(2)组织学生验证一般三角形的内角和是180°。
①引导学生量出每个内角的度数,再计算三个内角的和。
②引导学生分工合作,把结果填入记录表中。
③引导学生说说自己的发现。
(3)引导学生明确由于测量有误差,实际上三角形的内角和是180°。
(二)剪拼法。
1.组织学生用剪拼的方法求三角形的内角和。
2.引导学生总结发现。
3.课件演示,得出三角形的内角和是180°的结论。
(三)折拼法。
1.引导学生结合剪拼法尝试折拼法。
2.引导学生得出结论。
3.课件演示折拼法。
(一)1.(1)说出每个三角尺中各个角的度数。
①90°;60°;30°。
②90°;45°;45°。
(2)独立算出每个三角尺的内角和。
(3)得出结论:这两个三角尺的内角和都是180°。
2.(1)同桌之间互相说说自己的看法。
猜测:一种是内角和可能是180°,另一种是内角和一定是180°。
(2)小组合作进行探究,量一量,算一算,说一说。
三角形种类
每个内角
的度数
三个内
角的和
锐角三角形
65°
46°
68°
179°
钝角三角形
110°
25°
46°
181°
等腰三角形
70°
55°
55°
180°
等边三角形
60°
60°
60°
180°
通过观察发现:三角形的内角和都在180°左右。
(3)听老师讲解,明确三角形的内角和是180°。
(二)1.把一个三角形的三个内角剪下来,小组内拼合。在拼合过程中要注意:顶点重合,三个角拼合。
2.发现三角形的三个内角正好拼成了一个平角,也就是180°。
3.观看课件演示,明确三角形的三个内角拼成了一个平角,所以它的内角和是180°。
(三)1.动手折一折、拼一拼。
2.得出结论:三角形的三个内角拼在一起正好是一个平角,所以三角形的内角和是180°。
3.观看课件演示,再次明确三角形的内角和是180°。
2.算一算。
在一个直角三角形中,已知一个锐角是35°,另一个锐角是多少度?
3.在能组成三角形的三个角的后面画“√”。
(1)90°;20°;70°。 ( )
(2)100°;50°;50°。( )
(3)70°;70°;70°。( )
(4)80°;70°;30°。( )
4.猜一猜。
有一个三角形,其中一个角是20°,它可能是什么三角形?
5.已知∠1、∠2、∠3是三角形的三个内角,请你计算出每个三角形中∠1的度数。
(1)∠2=58° ∠3=48°
(2)∠2=∠3=70°
(3)∠1=∠2=∠3
三、巩固练习。(16分钟)
把正确答案的序号填在括号里。
1.把两个小三角形合成一个大三角形,这个大三角形的内角和是( )。
A.90° B.180° C.360°
2.一个三角形中有两个锐角,则第三个角( )。
A.也是锐角
B.一定是直角
C.一定是钝角
D.无法确定
小组合作,选一选,明确答案。
1.明确任何一个三角形的内角和都是180°,三角形的内角和与三角形的大小无关。
2.通过讨论,明确任何一个三角形都至少有两个锐角,所以无法确定。
6.如下图,在直角三角形中,已知∠2=30°,不计算,你知道∠1的度数吗?
四、课堂总结,拓展延伸。(3分钟)
1.总结本节课的学习内容。
2.布置课后作业。
谈自己本节课的收获。
三角形教案实用
接下来的文章将从不同角度来剖析和探讨“三角形教案”,以下是我个人总结和归纳的建议希望对你有所帮助。作为老师的任务写教案课件是少不了的,要是还没写的话就要注意了。 良好的教案和课件是提高教学质量和效益的保障。
三角形教案(篇1)
教学目标:
1.进一步认识三角形的概念及其基本要素,会按照边长、角的大小对三角形进行分类,掌握三角形三边的关系;
2.通过实验、操作、讨论等活动,进一步发展空间观念,逐步形成动手实践能力和数学语言表达能力.
教学重点:三角形的相关概念,三角形三边关系的探究和归纳.
教学难点:三角形三边关系的应用..
作业布置:1.课本26页习题7.4第2、4题;
教学过程:
一、探究:
播放“自行车”“金字塔”等含有三角形的图片.
请同学们从图片中找出熟悉的几何图形,举出生活中常见的三角形.
活动1
从播放的图片中抽象出的三角形有什么共同的特点呢?能否利用身边的笔摆一个三角形(黑板上画出一个三角形)?
活动2
投影出一个含有多个三角形的图片,要求学生从中找出不同的三角形.怎样表示三角形的三个顶点、三条边、三个内角呢?怎样表示三角形呢?
(利用黑板上三角形标上字母,用符号表示出来).
活动3
把含有多个三角形的图片中三角形抽取出来,分清哪些三角形是锐角三角形、直角三角形、钝角三角形?并将三角形的序号填入相关的椭圆框内.
活动4
1.从准备好的长度分别为3cm、4cm、5cm、6cm、和9cm的小木棒中任意取3根,能否搭成一个三角形?
2.小明说我上学走中间这条路最近,你知道这是什么原因吗?
二、合作:
1.图中共有几个三角形?把它们分别表示出来,并用量角器检验它们是锐角三角形、直角三角形,还是钝角三角形.
2.下列每组数分别是三根小棒的长度,用它们能摆成三角形吗?
3cm、 4cm、 5cm ( )
8cm、 7cm、 15cm ( )
5cm、 5cm、 11cm ( )
3.现有五根长度分别为3cm,4cm,5cm,6cm,9cm的小木棍,从中任意取3根,能搭成多少个不同的三角形?
三、展示:
1.有两根长度分别为4cm和7cm的木棒,
(1)再取一根长度为2cm的木棒,它们能摆成三角形吗?为什么?
(2)如果取一根长度为11cm的木棒呢?
(3)你能取一根木棒,与原来的两根木棒摆成三角形吗?
2.被公认为目前“世界第一高人”的土耳其公民苏坦科森身高2.51米,若他的腿长为1.3米,他一步(两脚着地时两脚的间距)能迈3米多?你相信吗?
四、拓展:
如图,方格中的点A、B、C、D、E称为“格点”,以这5个格点中的任意3点为顶点,一共可以画多少个三角形?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?
五、评价:
1.三角形如何表示?
2.三角形三边有何关系?根据是什么?
3.如何判定三条线段能否是同一个三角形的三条边?
4. 通过今天的学习,你还有什么困惑?
六:教学反思
三角形教案(篇2)
一、教材分析
本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.
教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.
二、教学目标分析
知识与技能
1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.
2.能准确确定全等三角形的对应元素.
3.掌握全等三角形的性质.
过程与方法
1.通过找出全等三角形的对应元素,培养学生的识图能力.
2.能利用全等三角形的概念、性质解决简单的数学问题.
情感、态度与价值观
通过构建和谐的.课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.
三、教学重点、难点
重点:全等三角形的概念、性质及对应元素的确定.
难点:全等三角形对应元素的确定.
四、学情分析
学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.
五、教法与学法
本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.
六、教学教程
Ⅰ.课题引入
1.电脑显示
问题:各组图形的形状与大小有什么特点?
一般学生都能发现这两个图形是完全重合的。
归纳:能够完全重合的两个图形叫做全等形。
2.学生动手操作
⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。
⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?
(学生分组讨论、提出方法、动手操作)
3.板书课题:全等三角形
定义:能够完全重合的两个三角形叫做全等三角形
“全等”用“≌”表示,读着“全等于”
如图中的两个三角形全等,记作:△ABC≌△DEF
Ⅱ.全等三角形中的对应元素
1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?
2.学生讨论、交流、归纳得出:
⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。
⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。
Ⅲ. 全等三角形的性质
1.观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边
有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
三角形教案(篇3)
全等三角形是八年级上册人教版数学教材第十三章第一节的教学内容。本节课是“全等三角形”的开篇,是全等三角形全等的条件的基础,也是进一步学习其它图形的基础之一。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习,为学习全等三角形奠定了基础。通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
本节教材在编排上意在通过全等图案引入新课教学,在新课教学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接受。根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
本节课以阅读法、实验法为主,讨论法、情境激学法为辅等教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,在“全等三角形”教学中要以“实验为基础”,增强学生的感性认识突破口。有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
本节课的教学过程是:首先,展示教材上的图案以及制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的'概念,并以找朋友的形式练指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,通过学生对全等三角形纸板的观察,小组讨论,合作交流,观察对应边、对应角有何关系,从而得出全等三角形的性质。并通过练习来理解全等三角形的性质并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质解决一些简单的实际问题。
三角形教案(篇4)
教材的小标题为“探索与发现”,说明这部分内容要求学生自主探索,并发现有关三角形内角和的性质。
三角形的内角和为何等于180度?小学阶段如何比较严密的验证这个性质,培养学生科学的数学素养,是这节课的重难点。在学生明确了“内角“的.含义后,通过学生的大胆猜想,从而引导学生探索三角形内角和等于多少度。大多数学生会想到测量的方法,但这只是一种不完全归纳法,还不能严密的证明。还可以引导学生想到将3个角转换成平角(180度)的方法,即撕角和拼角的方法,这也为今后在初中学习内角和的证明做知识储备。教师还可以在此基础上,再加上1—2种形象的证明方式,如:利用“极限”思想和转动角的方式。就是想让更多的学生感觉到,三个内角的和是180°的可能性很大,拓宽学生思路,并培养学生的空间想象能力。
四年级是发展学生逻辑思维能力的黄金时期,如何才能完整、严密的进行数学思考,培养推理能力,是我本节课关注的重点之一。对于“三角形的内角和等于180度”这个性质,有很多学生已经知道,但却是“知其然不知其所以然”。应在学生的学习基础上设置更高的目标,重视猜想与验证、培养学生事实求是的科学态度,学生对于验证的方式和方法,老师要做到适当点拨,及时鼓励。
1、学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度,会应用这一规律进行计算。
2、通过动手操作,找到规律,并能灵活运用。
3、培养学生的创新意识、探索精神和实践能力,在学生亲自动手和归纳中,感受到理性的美。
教学重点:学生亲自动手,通过量、剪、拼、折等方法推导出三角形内角和是180度。
三角形教案(篇5)
我的发现
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(二)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(三)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的.平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(四)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;
而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】
4.验证猜想“三角形的内角和是180度”
5.进一步感受
(1)三角形内角和与三角形大小的关系
教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?
(2)三角形内角和与三角形形状的关系
(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?
如果老师把一个角一直往下拽,猜一猜会怎样?
(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)
6.解释课前问题
用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。
三、拓展应用,深化创新
本节课的练习由易到难,设计成三个层次。
1、基本练习--形成技能 2、变式练习--巩固技能
3、 综合练习--发展提高技能
○1.介绍科学家帕斯卡(出示帕斯卡的资料)
师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
○2.多边形边形内角和
(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)
四、总结全课,全面提升
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
整个教学设计以《新课程标准》的基本理念为指导,做到“导入新课--新,引导探究--实,分层训练--活,新课总结--精”。
三角形教案(篇6)
1.寻找生活实例中的等腰三角形,给等腰三角形下定义,探求等腰三角形的轴对称性和它的相关性质.
2.培养学生自主、合作、探究的学习方式,亲身体验“再发现”过程.
在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.
经历探索等腰三角形的轴对称及相关性质的过程,进一步体验轴对称的特征,发展学生的空间意识.重点难点
教师出示学生熟悉的人字梁屋架:
师:图中的人字架屋架的外观结构形式是什么图形?
师:我们从这节课开始学习等腰三角形的有关知识(板书课题).
教师引导学生操作:
画一个等腰三角形ABC,把边AB叠合到边AC上,这时点B与点C重合,并出现折痕AD,如图
学生思考,教师参与探究.
学生口答:AB与AC相等,DB与DC相等,∠B=∠C,∠BAD=∠CAD,∠ADB=∠ADC.
学生小组讨论.
生:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴.
师:很好!这样也就是说等腰三角形的两个底角相等,简称“等边对等角”.
学生交流讨论.
教师提示:你先把这个命题分解为条件和结论两部分,写出已知、求证,然后给出证明.
教师找一名学生板演,其余同学在下面做,然后集体订正.
证明:取BC的中点D,连接AD.在△ABD和△ACD中,
师:很好!等腰三角形顶角的平分线垂直平分底边,∠BAD和∠CAD有什么关系呢?
学生思考.
共同总结:等腰三角形顶角的平分线平分底边并且垂直于底边,即等腰三角形顶角的平分线是底边上的中线也是底边上的高(简称三线合一).
根据性质1,师生共同得到等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°.
教师多媒体出示:
【例1】 已知:如图所示,在△ABC中,AB=AC,∠BAC=120°,点D、E是底边上两点,且BD=AD,CE=AE.求∠DAE的度数.
学生讨论方法.
教师巡视指导,然后集体订正.
∴∠B=∠C=×(180°-120°)=30°.
同理∠CAE=∠C=30°.
=120°-30°-30°
=60°
【例2】 已知:如图所示,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A和∠C的度数.
师:你能找出∠A与∠C的关系吗?你能找出∠A与∠BDC的关系吗?
生:能.∠BDC=∠A+∠ABD,又因为∠ABD=∠A,所以∠BDC=2∠A.
教师找一名学生板演,其余同学在下面做,然后集体订正.
∴∠ABC=∠C=∠BDC,
设∠A=x°,
则∠BDC=∠A+∠ABD=2x°.(三角形的一个外角等于与它不相邻的两个内角的和)
∵∠ABC=∠C=∠BDC=2x°,
等腰三角形是轴对称图形,可以借助轴对称变换来研究等腰三角形的一些特征.为此,我以轴对称图形为切入点,先让学生通过折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的.善于做解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步做一题多变、一题多问、一题多解,挖掘例题的深度和广度,扩大例题的辐面,无疑对能力的提高和思维的发展是大有裨益的.
1.掌握等腰三角形的判定定理及推论,并能够灵活应用它进行有关的论证和计算.
2.掌握等边三角形的判定定理,并能够 灵活应用它进行有关论证和计算.
1.在探究过程中,增强协作交流,培养学生多角度思考问题的习惯,提高学生分析问题和解决问题的能力.
2.通过观察等腰三角形和等边三角形的判定定理,培养学生的观察、分析能力,发展学生的形象思维能力.
1.发展学生的动手、归纳猜想能力,培养学生的文字表达能力和几何证明能力.
2.掌握归纳思维方法,领会数学的转化思想.
3.发展学生的独立思考、勇于探索的创新精神.
师:请同学们回顾一下,等腰三角形的性质有哪些?
生:等腰三角形的两底角相等,简写为“等边对等角”.
师:这是个真命题吗?我们今天就来研究这个问题.
师:作出图形,根据图形,在△ABC中,∠C=∠B,AB=AC吗?
学生讨论交流、思考回答.
教师让学生作一个有两个角相等的三角形,量一量它们所对的边.
生:在△ABC中,过点A作∠A的平分线交BC于点D,则顶角被平分,又两底角相等,由三角形内和性质得∠ADB=∠ADC.沿直线AD折叠,点B与点C重合,因此AB=AC.
师:很好,这就是等腰三角形的`判定定理:有两个角相等的三角形是等腰三角形(简称等角对等边).
学生熟记.
师:大家想一下,三个角都相等的三角形是什么三角形?
师:有一个角是60°的等腰三角形是什么三角形呢?
生:有一个角是60°的等腰三角形是等边三 角形.
师:在证明中,由△ABD≌△ACD我们能得到什么?
生:BD=DC,∠BAD=∠CAD,∠ADB=∠ADC=90°.
师:对,同学们观察得很仔细.所以我们能得到等腰三角形的又一性质:等腰三角形顶角的平分线垂直平分底边.换句话说,等腰三角形的顶角平分线、底边上的中线和底边上的高三线合一.
生:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边是斜边的一半.
生:能,如上图所示,易证得△ACD≌△ACB,∴AD=AB,∠BAC=∠DAC=30°,∠BAD=60°,∴△ABD是等边三角形,∴BD=AB,BC=BD=AB,故得证.
求证:Rt△ABC≌Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.
已知:如图(1),在Rt△ABC≌Rt△A'B'C'.
证明:在平面内移动Rt△ABC和Rt△A'B'C',使点A和点A'、点C和点C'重合,点B和点B'在AC的两侧,如图(2).
在Rt△ABC和Rt△A'B'C'中,
教师多媒体出示:
【例】 如图,一艘船从A处出发,以每小时10n ile(海里)的速度向正北航行,从A处测得一礁石C在北偏西30°的方向上.如果这艘船上午8:00从A处出发,10:00到达B处,从B处测得礁石C在北偏西60°的方向上.
生:根据“在A处测得礁石C在北偏西30°的方向”和“从B处测得礁石C在北偏西60°的方向上”这两句.
生:以B为顶点,向北偏西60°作角,这角一边与AC交于点C,则C点就是礁石C的位置.
本节课我先让学生复习了上节课学习的等腰三角形的性质定理,然后让他们说出它的逆定理,由判断它的真假引出本节课,增强学生的好奇心和求知欲.在教法设计上,我把重点放在了逐步展示知识的形成过程上,由个别现象到一般抽象,体现出了学生从感性认识到理性认识发生发展的认知过程.在教学过程中,注意引导学生对解题思路和方法进行总结,渗透化归思想与分类讨论数学思想,注意培养学生形成积极探索主动学习的态度,充分体现数学教学主要是数学活动的教学,促进学生之间的合作、交流意识,培养学生的语言表达能力,增强小组合作意识.
三角形教案(篇7)
教学内容:
人教版四年级数学下册第五单元三角形P80、81页例1、例2,练习十四1、2、3题。
教材分析:
《三角形的特性》是人教版义务教育课程标准实验教科书四年级数学下册第80——81页的内容。学生通过第一学段以及四年级上册对空间与图形的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本节内容的设计是在上述的基础上进行的,教材的编写注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解三角形概念,构建数学知识。
学生分析:
学生在日常生活中经常接触到三角形,对三角形有一定的感性认识,但几何初步知识无论是线、面、体的特征还是图形的特征、特性,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生思维特点之间的矛盾,就要充分运用其直观性进行教学。
设计理念:
学生对几何图形的认识是通过操作、实践而获得的。因此本节课从学生已有的生活经验出发,创设教学情境,让学生动手操作,自主探究、合作交流掌握三角形概念以及特性。
教学目标:
1、通过动手操作和观察比较,使学生认识三角形,知道三角形的特征及三角形高和底的含义,会在三角形内画高。
2、通过实验,使学生知道三角形的稳定性及其在生活中的应用。
3、培养学生观察、操作的能力和应用数学知识解决实际问题的能力。
4、体会数学与生活的联系,培养学生学习数学的兴趣。
教学重点、难点:
重点:理解三角形的含义,掌握三角形的特征、特性。
难点:三角形高的确定及画法。
教具、学具准备:
教师准备:多媒体课件,硬纸条制作的长方形和三角形,三角板,作业纸等。
学生准备:学具小棒、彩色笔、三角板,直尺等。
教学过程:
一、联系生活,情境导入
1、播放视频短片。
师:为了上好今天这节课,老师特意拍了一小段视频,考考你们,看你们能否发现短片中你比较熟悉的图形?(课件播放视频:三角形的木梯、空调外机的支架和电视塔)
学生自由汇报。
师:老师很高兴你们都有一双智慧的眼睛。
2、学生举例说生活中的三角形。
师:你还能说出生活中哪些物体上有三角形吗?
生:红领巾、房梁、自行车、交通标志牌、电视接收塔、高压线塔……
从你们的回答中老师感受到你们都是善于观察、善于发现的好孩子!看来生活当中的三角形还真不少啊!这节课你想研究三角形的什么知识?
1、根据学生的汇报,相机揭示课题并板书:
三角形的特性、定义、特点等。
二、操作感知,理解概念
1、发现三角形的特点。
师:用你喜欢的颜色在作业纸上画一个三角形。边画边想:三角形是由哪些部分组成的?
展示学生画的三角形,组织小组交流:和小组内的同学交流一下,你们画的三角形有什么共同的特点?
反馈,根据学生的汇报出示课件标出三角形各部分的名称。(板书:三条边、三个角、三个顶点)
2、概括三角形的定义。
师:看来大家对三角形的特点达成了一致的看法。能不能用自己的话概括一下,什么样的图形叫三角形?
学生的回答可能有下面几种情况:
(1)有三条边的图形叫三角形或有三个角的图形叫三角形;
(2)有三条边、三个角的图形叫三角形;
(3)有三条边、三个角、三个顶点的图形叫三角形;
(4)由三条边组成的图形叫三角形;
(5)由三条线段围成的图形叫三角形。
师:请你们对照上面的说法,判断下面的哪个图形是三角形?
课件出示一组图形:
讨论:哪种说法更准确?
阅读课本:课本是怎样概括三角形的定义的?(根据学生汇报板书:由三条线段围成的图形叫做三角形。)你认为三角形的定义中哪些词最重要?
组织学生在讨论中理解“三条线段”“围成”(边画三角形边强调“每相邻两条线段的端点相连接”。)
学生看着书齐读三角形的定义。
师小结:数学是一门严谨的学科,我们在用数学语言表达的时候也要讲求其严谨性。
3、探究三角形的特性。
(1)联系生活,了解三角形的特性。
师:细心观察,我们就会发现生活中有许多地方都会用到三角形的知识。
课件出示练习十四第2题“围篱笆”图。
师:瞧!小兔和小猴分别在各自的菜地边围上篱笆,小兔围成的是长方形,小猴围成了三角形。
请同学们想想哪种围法更牢固?为什么?下面我们来做个实验。
(2)动手操作,发现三角形的特性。
师拿出长方形框架。
师:谁想来拉一拉这个长方形的框架,你有什么发现?(容易变形,不稳定。)
课件演示:如果我们在小兔的篱笆上轻轻一推,会出现什么情况?(篱笆会倒下去。)
指导学生操作:去掉一条边,再扣上拼组成三角形框架。
师:再拉一拉有什么感觉?
请一名学生上前演示。
师:其他同学也想体验一下吗?(学生兴趣高涨,想要动手试试。)拿出你们的学具小棒和小组内的同学一起动手感受一下。
师小结:通过实验发现三角形不易变形,可见三角形具有稳定性。(板书:稳定性。)
点击课件,小猴的篱笆上有个红色的三角形在闪烁。
师:现在你能说说为什么小猴的篱笆更牢固了吗?
生:因为小猴的篱笆是三角形的,所以更牢固。
师:你知道生活中还有哪些地方用到了三角形稳定性的特征吗?
生:自行车、篮球架、电线杆……
小结:(点击课件,物体中红色的三角形在闪烁)生活中常见的自行车、篮球架、电线杆等物体之所以制成三角形,其中一个重要原因是利用了三角形的稳定性,使其结实耐用。
(3)运用三角形的特性解决生活中的实际问题。
课件出示练习十四第3题图片。
师:了解了三角形具有稳定性这一特性,我们可以用这个知识来解决生活中的难题。看,这是一把旧椅子,摇晃得很厉害。扔掉可惜,该怎样加固它呢?
指名学生上台演示具体怎样做。
追问:为什么要在椅子的两条腿上斜斜地钉上一根木条?这样做运用了什么知识?
生汇报后师小结:这样做是应用了三角形的“稳定性”。同学们能够学以致用,真了不起!
4、认识三角形的底和高。
(1)初步感知三角形的高。
课件出示松鼠和斑马的“别墅”。
师:聪明的松鼠和斑马也利用了三角形的这一特性各给自己做了套漂亮的别墅。你知道哪个是松鼠的家?哪个是斑马的家吗?你是怎么想的?
生:高的别墅是斑马的,矮的别墅是松鼠的。
师:你说的房子的“高”指的是哪部分?请上来指一指。(学生上台比划三角形的高。)
师:(出示课件)老师这里有三幅图,那幅图把你心目中的高画下来了?
生:第(1)幅。
师:第二幅为什么不是?(第二幅是斜的,高应该是垂直线段。)
师:那第三幅是垂直的呀?为什么也不是呢?(没有经过顶点)
(2)理解三角形高的概念。
师:那你能说说什么是三角形的高吗?
结合学生的描述板书揭示三角形高的定义。
师边揭示三角形高的定义边出示课件演示三角形高的画法。
板书:顶点、(画高,标直角符号)高、底。
(3)动手画三角形的高。
在你画的三角形上确定一个顶点,再画出它的对边上的'高。(学生动手画高。)
师:谁来说说你是怎么画的?(指名学生上台演示,结合学生的汇报出示课件演示)
强调:其实画三角形的高就是我们上学期学过的过直线外一点画已知直线的垂线。要注意的是代表高的这条线段要画成虚线段,别忘了标上直角符号。
师:为了方便表达,我们习惯用连续的三个字母A、B、C分别表示三角形的三个顶点,(板书:给三角形标三个顶点标上A、B、C)上面的三角形就可以表示成三角形ABC。那么和A点相对应的底是哪条边?(BC)(课件同步演示)你们也可以用自己喜欢的字母来表示你画的三角形,在你的三角形中,你将哪个点定为顶点的?和它相对应的底是哪条边?(学生汇报)
师:想一想,从三角形的一个顶点到它的对边可以画一条高,三角形有几个顶点?(3个)那也就是说一个三角形有几条高?(板书:三条高)
刚才我们是从顶点A到和它相对应的底BC画出了三角形的一条高,现在我们将AC作为三角形的底来画一条高,你能找到AC这条底所对应的顶点吗?(B点)对,找到底边所对应的顶点,我们就可以用同样的方法画出已知底边上的高了。
请你们在作业纸上画出每个三角形指定底边上的高。(练习十四第1题)
学生画完后汇报的同时,师点击课件演示。强调直角三角形的两条直角边中当其中一条作为底边时,另一条就是高。
(4)拓展画钝角三角形外的两条高。
学生试着画高,汇报的同时课件辅助演示画高的过程。
三、课堂小结
通过这节课的学习,你对三角形又有了哪些新的认识?
你还想了解三角形的哪些知识?
设计反思:
阅读教材发现,教材在《三角形》这一单元第一课时的安排是从对身边的实物的观察中提炼出三角形,通过学生的观察,总结出三角形的基本特点及定义,然后介绍了三角形的高和底,再通过观察三角形在生活中的应用及自身的体验感受到三角形的稳定性。本节课中所要达到的教学目标有理解三角形的定义,掌握三角形的特点和特性,会画三角形的高。其中理解三角形的定义,掌握三角形的特征、特性是本课的教学重点。三角形高的确定及画法是本课的教学难点。
三角形的“高”历来是教师们公认的教学难点,在教学中如何有效破解这个难点成了我思考的主要方向。从以往的教学情况来分析,对于三角形的“高”,学生的困难主要是:一、什么是“高”;二、如何画“高”。其实,关于“高”学生是具有一定的知识和经验基础的。这种基础主要体现为“平行四边形的高”的学习经验和“生活中的高”的生活经验两个方面。而这些经验基础对于三角形的“高”的概念的形成并没有呈现出多少同化效应,而是存在许多有待调适顺应的问题。因为平行四边形的“高”是从平行四边形的一边任意一点到对边引出的垂直线段,而三角形的“高”是从三角形的一个顶点到它的对边引出的垂直线段。从“任意点”到“指定点”,学生的心理需要有一个调适的过程。生活中的“高”往往是以水平面为基准进行观察的,一旦“高”发生了变化,学生就会陷入“斜面上的垂直线段是不是高”的迷惘状态。基于以上思考,我对教材内容进行了重组。
在导入新课环节,通过播放视频短片,既勾起学生大脑中对三角形的记忆,又让学生感受到三角形大量地存在于生活当中,体验到数学知识与实际生活的紧密联系。教学的重难点都在第二个环节“操作感知,理解概念”,首先通过组织学生动手画三角形,小组交流所画三角形有什么共同特点来引导学生发现三角形具有“三条边、三个顶点、三个角”的特点。在学生交流汇报的基础上让学生试着说说什么样的图形是三角形,此时,学生对三角形的认识还只是停留在“三条边、三个顶点、三个角”的直观认识上。因此,我设计了一组图形,让学生对照自己的说法,判断其中的哪个图形是三角形。用“哪种说法更准确?”引出三角形的科学定义。三角形具有稳定性这一特性是本节课的一个重点,在“探究三角形的特性”这个环节,我设计了三个层次的内容来突出这个教学重点:(1)联系生活,了解三角形的特性。(2)动手操作,发现三角形的特性。(3)运用三角形的特性解决生活中的实际问题。这个环节的设计从发现生活中的问题开始到运用所学知识解决生活中的问题结束,密切了数学知识与实际生活的联系,培养学生发现问题,运用数学知识解决问题的能力。其中的第(2)个环节组织学生动手操作,亲身体验三角形的特性。第四个环节“认识三角形的底和高”是本课的重点,更是难点。设计“哪个是斑马的别墅?哪个是松鼠的别墅?”激起了学生“生活中高”的经验,一句“老师这里有三幅图,哪幅图把你心目中的高画下来了?”再通过追问“第二幅为什么不是?”“那第三幅是垂直的呀?为什么也不是呢?”使学生初步感知三角形的高必须具备两个条件:“是垂直线段”和“从顶点开始画起”。在引导学生理解三角形高的概念时,我从让学生自主阅读课本上三角形高和底的概念,结合学生对课本的阅读辅以课件进行直观的演示,最后画高及板书三个方面来加强学生对三角形高和底的概念的理解。在学生初步理解三角形高和底的概念后,组织学生动手画三角形的高,引导学生画高前先确定一个顶点,是为了帮助学生建立“一个顶点对应一条底边”印象,为后面得出“三角形有三条高”这个结论以及画直角三角形和钝角三角形的高铺路搭桥。课件演示从三角形ABC的顶点A到它的对边BC作一条高后,我没有急于让学生练习“练习十四第1题:画出下面三角形指定边上的高。”而是缓了一步,设计了“现在我们将AC作为三角形的底来画一条高,你能找到AC这条底所对应的顶点吗?”这个问题,再次加强学生对“一条底边同样对应一个顶点”这个难点的理解,使学生明白,画三角形指定边上的高时要先找到和这条底边相对应的顶点。有了这些铺垫,三角形的“高”怎么去画,我想对于学生而言,已不再是多么困难的事情了。
三角形内角和教案十五篇
在教学过程中,老师教学的首要任务是备好教案课件,又到了写教案课件的时候了。 教案课件能够准确地反映出教学过程中的创造和智慧,对于写教案课件有哪些疑问呢?这篇文章是幼儿教师教育网从网络上认真筛选的优质“三角形内角和教案”文章,我们会不断更新和改进还请您多多关注我们的网站!
三角形内角和教案【篇1】
一、教学目标:
1、理解掌握三角形内角和是180°,并运用这一性质解决一些简单的问题。
2、通过直观操作的方法,引导学生探索并发现三角形内角和等于180°,在实验活动中,体验探索的过程和方法。
3、在探索和发现三角形内角和的过程中获得成功的体验。
难点:运用三角形内角和等于180°的性质解决一些实际问题。
学具:量角器、直角三角形、锐角三角形和钝角三角形各一个。
我们已经学过了三角形的知识,我们来复习一下,看看大屏幕,各是什么三角形?谁能说说什么是锐角三角形、直角三角形、钝角三角形?追问:不管是什么三角形它们都有几个角呢?这三个角都叫做三角形的内角,而这三个内角的和就是这个三角形的内角和。那么谁来说一说什么是三角形的内角和?三角形有大有小,形状也各不相同,那么它们的内角和有没有什么特点和规律呢?我们来看一个小片段,仔细听它们都说了什么?
教师放课件。
课件内容说明:一个大的直角三角形说:“我的个头大,我的内角和一定比你们大。”一个钝角三角形说:“我有一个钝角,我的内角和才是最大的)一个小的锐角三角形很委屈的样子说“是这样吗?”
都听清它们在争论什么吗?(它们在争论谁的内角和大。)谁能说一说你的想法?(学生各抒己见,是不评价)果真是这样吗?下面我们就来研究“三角形内角和”。
1、探究三角形内角和的特点。
(1)检查作业,并提出要求:
昨天老师让每位学生都分别剪出了锐角三角形、直角三角形和钝角三角形,并量出了每个角的度数,都完成了吗?拿出来吧,一会我们要算出三角形的内角和填在下面的表格里。我们来看一下表格以及要求。出示小组活动记录表。
②小组合作。
会使用表格了吗?下面我们就以小组为单位,按照要求把结果填在小组长手中的表格内。
各组长进行汇报。发现了三角形的内角和都是180°左右。
师:实际上,三角形三个内角和就是180°,只是因为测量有误差,所以我们才得到刚才得到的数据。
2、验证推测。
那么同学们有没有什么办法知道三角形的内角和就是180°呢?大家可以讨论一下,学生可能会想到用折拼或剪拼的方法来看一看三角形的三个角和起来是不是180°,也就是说三角形的三个角能不能拼成一个平角。师生先演示撕下三个角拼在一起是否是平角,同学们在下面操作进行体验,再用课件演示把三个内角折叠在一起(这时要注意平行折,把一个顶点放在边上)学生也动手试一试。
通过我们的验证我们可以得出三角形的内角和是180°。
3、师谈话:三个三角形讨论的问题现在能解决了吗?你现在想对这三个三角形说点什么吗?(让学生畅所欲言,对得出的三角形内角和是180°做系统的整理。)
4、同学们还有什么疑问吗?大家想一想我们知道了三角形内角和是180°可以干什么呢?(知道三角形中两个角,可以求出第三个角)
出示书28页,试一试第3题,并讲解。
说明:在直角三角形中一个锐角等于30°,求另一个锐角。
生独立做,再订正格式、以及强调不要忘记写度。
小结:同学们有没有不明白的地方?如果没有我们来做练习。
1、出示书29页第一题。说明:第一幅图是锐角三角形已知一个锐角是75°,另一个锐角是28°,求第三个锐角?第二幅图是直角三角形已知一个锐角是35°,求另一个锐角?第三幅图是钝角三角形已知一个锐角是20°,另一个锐角是45°,求钝角?
完成,并填在书上。讲一讲直角三角形还有什么解法。
2、出示29页第2题。
一个直角三角形说:我的两个锐角之和正好等于90°。让学生判断。
3、画一画:
出示四边形和六边形。运用三角形内角和是180°计算出各自的内角和。你能推算出多边形的内角和吗?
三角形内角和180度是科学家帕斯卡12岁时发现的。我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
让学生说说在这节课上的收获!
三角形内角和教案【篇2】
1、知识与技能:
(1)理解和掌握三角形的内角和是180°。
(2)运用三角形的内角和知识解决实际问题和拓展性问题。
2、过程与方法:
(1)通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
(2)知道三角形两个角的度数,能求出第三个角的度数。
(3)发展学生动手操作、观察比较和抽象概括的能力。
3、情感态度与价值观:
让学生体验数学活动的探索乐趣,通过教学中的活动体会数学的转化思想。
1、猜谜语:
形状似座山,稳定性能坚。三竿首尾连,学问不简单。
师:老师这有1个三角形,它的一部分被智慧星给遮住了,猜猜这是什么三角形?它里面会出现两个直角吗?为什么?
3、引出课题。
师:为什么不会出现两个直角?今天我们就再次走进数学王国,探讨三角形的内角和的奥秘。(板书课题)
3、验证。
让学生用自己喜欢的方式验证三角形的内角和是不是180°。
师:汇报的测量结果,有的是180°,有的不是180°,为什么会出现这种情况?有没有别的方法验证?
A、学生上台演示。
B、请大家三人小组合作,用剪拼的方法验证其它三角形。
师:有没有别的验证方法?我在电脑里收索到折的方法,请同学们看一看他是怎么折的(课件演示)。
(5)数学小知识。
5、巩固知识。
(1)解决课前问题,为什么一个三角形不可能有两个直角?一个三角形中可以有2个钝角吗?
师:接下来,利用三角形的内角和我们来解决一些相关的问题吧!
1、看图,求未知角的度数。
2、判断。
3、如果一个都不知道,或只知道1个角,你能知道三角形各角的度数吗?
求出下面三角形各角的度数。
(1)我三边相等。
(2)我是等腰三角形,我的顶角是96°。
(3)我有一个锐角是40°。
4、求四边形、五边形内角和。
四、总结。
三角形内角和教案【篇3】
冀教版七年级下册数学
9.2《三角形内角和外角》
——三角形内角和定理证明教学设计
一.教材分析:
(一)教材的地位和作用:
这节内容是在前面学生对“三角形内角和是180°”这个结论有了一定直观认识的基础上编排的,以往对这个结论也曾进行过简单的说理,这里则以严格的步骤演绎证明,旨在让学生从实践操作转移到理性思维上来,使学生初步掌握证明的要求和格式,促使学生养成严谨的数学思维方法,发展学生的证明素养。
三角形内角和定理从数量角度揭示三角形三内角之间的关系,是三角形的一个重要性质,既是今后几何推理的重要依据,又是计算角度的重要方法。教材从学生实践操作到证明过程的呈现训练了学生的抽象思维能力和逻辑推理能力;其中辅助线的作法学生第一次接触,它集中了条件、构造了新图形、形了成新关系,实现了未知与已知的转化,起到了解决问题的桥梁作用。
(二)教学目标:
1.知识与技能目标:掌握三角形内角和定理的证明,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。
2.过程与方法目标:
(1)对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。
(2)通过一题多证、一题多变体会思维的多向性。
(3)引导学生应用运动变化的观点认识数学。
3.情感与态度目标:通过一题多证激发学生勇于探索的精神,感悟逻辑推理的价值。
(三)教学重难点:
1.重点:探索证明三角形内角和定理的不同方法
2.难点:应用运动变化的观点认识数学,从拼图过程中发现并正确引入辅助线是本节课的关键。
二.教学方法:引导发现法、尝试探究法。
三.教学过程:
一、创设情景、提出问题:
在小学,我们已经知道三角形内角和是180°,那它是怎么来的呢?你能给出说理吗?
二、探究新知
(一)动手操作、探索解法:
画出一个三角形,并将它的内角剪下,做拼角实验
归纳:可以搬一个角用“两直线平行,同旁内角互补”来说理,也可以搬两个角、三个角用“平角定义”说明。引导学生合理添加辅助线,为书写证明过程做好铺垫。
(二)议一议,开阔思野:
1.‘搬三个角’的特点:把角‘搬’到一起,让顶点重合、两条边形成一条直线,以便利用平角定义。
在证明三角形内角和定理时,可以把三个角集中到三角形的某一个顶点吗?引导学生思考。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:过A点作DE∥BC
C D A E
∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等)
∵∠DAB+∠BAC+∠EAC=180°
∴∠BAC+∠B+∠C=180°(等量代换)
那么是否可以把三个角集中到三角形的一边上呢?集中在内部任意一点上呢?外部呢?引导学生开阔思维,大胆探索证明方法。
2.应指出辅助线通常画为虚线,并在证明前交代说明。添加辅助线不是盲目的,而是证明需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
四.教学反思 :C D
本课以撕纸法验证得出“三角形内角和是180°”后,启发学生还可利用添加辅助线的方法去证明三角形内角和定理。
课堂教学充分发挥课件辅助教学的作用,将知识形象化、生动化、具体化。重视数学思想方法的引导,并及时指导归纳总结。
为了突出重点、突破难点,我对教材做了少量的补充和扩展,利用多媒体直观形象、节省时间的特点,动画演示再现学生拼图过程、解题过程,引导学生从动态角度直观地思考问题,帮助学生理解运动变化的观点。
三角形内角和教案【篇4】
教学内容:
四年级下册第78~79页的例4和“练一练”,练习十二第10~13题。
教学目标:
1、使学生通过观察、操作、比较、归纳等活动,发现三角形的内角和等于1800,并能应用这一知识求三角形中一个未知角的度数。
2、使学生经历探索和发现三角形内角和等于1800的过程,进一步增强自主探索的意识,积累类比、归纳等活动经验,发展空间观念。
3、使学生在参与学习活动的过程中,形成互助合作的学习氛围,培养大胆猜想、敢于质疑、勇于实践的科学精神。
教学重点:
让学生经历“三角形内角和等于180°”这一知识的形成、发展和应用的全过程。
教学难点:
探究和验证“三角形内角和等于180°”。
教学准备:
学生准备三角板一副、量角器;教师准备多媒体课件、信封里装三角形纸片若干。
教学过程:
一、创设情境,产生疑问
1、理解内角和含义。
2、故事激趣
提问:三兄弟围绕什么问题在争吵?你有什么看法?
二、自主学习,合作探究
1、提出猜想。
(1)计算三角板的内角和。
(2)提出猜想。
提问:通过刚才的计算,你能得出什么结论?有同学怀疑吗?
指出:“三角形的内角和等于1800”只是根据这两个特殊三角形得到的一个猜想。
引导:需用更多的三角形验证。
2、进行验证。
(1)验证教师提供的'三角形。
测量:任意三角形的内角和。
①小组合作:用量角器量出信封里不同三角形的内角和。
②交流测量结果。
③提问:根据测量结果,你能得出什么结论?
拼一拼:把一个三角形的三个角拼在一起。
①思考:除了量,还可以用什么方法验证呢?
②同桌合作:尝试把三个内角拼成一个平角。
③反馈不同的拼法。
④提问:既然三角形的三个内角能拼成一个平角,你能得出什么结论?有怀疑吗?
解释误差问题。
(2)验证学生自己画的三角形。
学生任意画一个三角形,用自己喜欢的方法去验证。
交流:自己画的三角形验证出来内角和是1800吗?有谁验证
出来不是1800的吗?
提问:你又能得到什么结论?还有怀疑吗?
3、得出结论。
指出:三角形有无穷多,课上得到的还只是一个猜想。随着验证的深入,能越来越确定这个猜想是对的。
说明:科学家们已经经过严格的论证,证明了所有三角形的内角和确实都是1800。
解决争吵:学生用三角形内角和的知识劝解三兄弟。
三、巩固应用,深刻感悟
1、算一算:求三角形中未知角的度数。
2、拼一拼:用两块相同的三角尺拼成一个三角形。
思考:拼成的三角形内角和是多少?
3、画一画:(1)你能画出一个有两个锐角的三角形吗?
(2)你能画出一个有两个直角的三角形吗?
(3)你能画出一个有两个钝角的三角形吗?
四、全课总结,课后延伸
1、学生自主总结一节课的收获。
2、介绍帕斯卡。
3、用三角形拼成四边形、五边形、六边形,引发新的问题。
三角形内角和教案【篇5】
教学目标:
1.知道三角形的内角和是180度,理解三角形内角和与三角形的大小无关。
计算、猜想、实验等数学活动,积累认识图形的方法和经验,逐步推理、归纳出三角形内角和。
3.关注学生在操作活动中遇到的真问题,培养学生诚实严谨的实验态度,实事求是的科学的态度。
教学重点:
知道三角形的内角和是形状无关。
教学难点:
经历操作活动,推理、归纳出三角形的内角和。
教学资源:
多煤体课件,各种三角形,三角板,量角器,剪刀。
教学活动:
一、创设情境,导入新课。
1.昨天我们学习了三角形的分类,三角形按角的特征怎么分类?按边的特征怎么分类?
现在能确定了吗?为什么现在就能确定了?(有一个钝角,两个锐的三角形是钝角三角形)。
二、合件交流,操作发现。
你知道三角尺内角的度数分别是多少吗?每个直角三角尺的内角度数之和都是多少度?我们能根据三角尺的内角和是(课件出示学习单)。
2.组织学生小组合作:
请同学们以。②同桌交流,你们有什么发现?
3.组织学生汇报交流:
①那个组说一说你们组测量的数据和计算的结果?(学生的计算不是正好②你们有什么发现?(锐角三角形、直角三角形、钝角三角形的内角和大约都是老师板书:三角形的内角和是,就需要我们验证,请同学们想办法验证我们的猜想对不对?(学生通过折的方法剪拼进行验证;学生通过剪、拼的方法进行验证。)
4.学生展台展示自己的难方法。通过验证,我们发现三角形的内角和是180度。老师把“?”改为“!”。
三、实践应用,拓展延伸。
°,∠°。
。
四、反思总结,自我建构。
这节课你有什么收获?
这节课我们就研究到这儿,同学们再见!
三角形内角和教案【篇6】
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
三角形内角和教案【篇7】
各位评委:
我说课的主题是“角色扮演,引导学生猜想验证”,说课的内容是《三角形的内角和》。
一、说说我对教材与学情的分析
《三角形的内角和》是北师大版四年级下册第二单元的教学内容,是在学生学习了三角形的概念及特征、分类之后进行的,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础。教材的小标题为“探索与发现”,强调说明这一部分的内容要求学生通过自主探索来发现有关三角形的性质。学生已经掌握三角形特性和分类,熟悉了钝角、锐角、平角这些角的知识,大多数学生已经在课前通过不同的途径知道“三角形的内角和是180度”的结论,但不一定清楚道理,所以本课的设计意图不在于了解,而在于验证,让学生在课堂上经历研究问题的过程是本节课的重点。
二、聊聊我对教学目标及重难点的确定
以建构主义理论以及有效教学的理念为指导,结合对教材和学情的分析,我将本节课的教学目标定为下列几点:
1、通过量、剪、拼等活动发现、验证三角形的内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、经历亲自动手实践、探索三角形内角和的过程,体会运用“量一量”、“算一算”、“拼一拼”、“折一折”进行验证的数学思想方法。
3、在探究中体验成功的喜悦,激发主动学习数学的兴趣。
教学重点:经历“三角形的内角和是180°”的形成、发展和应用的全过程。
教学难点:验证“三角形的内角和是180°”以及对这一规律的灵活运用。
学具准备:量角器、三角尺、剪刀和准备一个喜欢的三角形。
三、谈谈我的主要教学流程
本节课我设计采用支架式教学方法,以猜想→验证→应用→评价四个活动环节为主线,引导学生通过自主探究学习实现对“三角形内角和是180°”这一知识规律的数学理解。同时,每一个活动环节都让学生尝试扮演一种角色,激发他们投入课堂活动的兴趣。
1.大胆设疑,提出猜想(猜想家)
在这节课之前,有不少学生通过各种渠道了解了三角形的内角和是180°。因此,第一个环节我就让学生根据已有的知识经验进行大胆设疑,提出猜想,做一个猜想家。
首先,我向学生出示一个长方形,向学生讲解长方形的四个内角,引导学生将这四个内角的度数相加算出长方形的内角和是360°。
接着,我把长方形拆成两个三角形,让学生指出其中一个三角形的三个内角,设问:这个三角形的三个内角和是多少?让学生说说各自的看法和理由,并引导提出“是不是所有的三角形的内角和是180°”的猜想。通过这一环节,学生首先获得对“三角形内角和是什么”这一陈述性知识的数学理解。
2.科学验证,探索规律(科学家)
有了大胆的猜想,就要进行科学的验证,第二个角色就是扮演科学家,对刚才的猜想进行科学验证,自主探索。
第二个环节的活动步骤如下:
(1)提供实验活动需要操作的工具,如:量角器、三角尺、剪刀等,让学生说说:“要知道三角形的内角和,怎样利用好这些工具?”
(2)明确提出操作要求:先在自己准备的三角形上作好内角的符号,选择合适的工具开展实验,遇到操作困难可以与同伴商量或请老师帮助解决。
(3)学生操作后在小组内交流,出示交流提纲:
A、通过实验操作,你发现三角形的内角和有什么特点?你是怎样发现的?
B、你认为三角形的内角和与三角形的大小、形状有关吗?为什么?
(4)集体交流,小结规律:
在组织学生交流实验的过程与成果时,我会挑选出研究不同形状或不同大小的三角形的学生进行实验汇报,并在学生提出疑问时进行合理的解释与调控,尤其是要对一些通过量一量得出180度左右的结论进行“误差解释”。最后与学生一起小结归纳出:“三角形的内角和是180°,而且与它的大小、形状无关”这一数学规律,从中感悟由特殊到一般的证明方法。
3.联系生活,实践应用(实践家)
有效教学理论指出练习要考虑它的实效性。在这个环节,我设计让学生扮演实践家,通过三个有层次有针对性的练习实践把探索得出的知识应用于生活问题之中。
第一,基本运用。即书本中“试一试”的第3题和“练一练”的第1、第2题。通过这个3练习让学生形成运用三角形内角和的知识求出未知角度数的基本技能。
第二,综合运用。即书本中“做一做”的第3题,这道题在让学生知道其中一个角等于60度的情况下,综合运用三角形内角和是180度和三角形分类知识来进行解决。
第三,拓展延伸。我设计了让学生求四边形和五边形等多边形的内角和的问题,让学生通过量、拼、分等办法尝试求多边形内角和,并找出其中的规律。
4.自我反思,评价延伸
在这个环节,我会让学生自己说说:“这节课你有什么收获?”“在扮演三个角色时,哪一个角色完成得最好,为什么?”
为了突出本课的重点,我设计了简洁明了的板书:
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
三角形内角和教案【篇8】
教学目标:
1、通过测量、撕拼、折叠等探索活动,使学生发现三角形内角和的度数是180?
2、已知三角形两个角的度数,会求第三个角的度数。
3、培养学生动手实践,动脑思考的习惯。
教学难点:
理解三角形三个内角大小的关系。
教具学具准备:
教材创设了一个有趣的问题情境,通过对大小两个三角形内角和的大小比较来激发学生探索的兴趣。教材为了得到三角形内角和是180的结论安排了两个活动,通过学生测量,折叠,撕拼来找到答案。
学生在已有的会用量角器来度量一个角的度数的基础上,会首先想到这种方法。但测量的误差会导致测量不同,因此,学生会想到采取其他更好的办法,通过亲手实践,得出结论。
师:今天我们来研究三角形内角和度数。这里有两个三角形,一个是大三角形,一个是小三角形(图略),到底哪一个三角形的内角和比较大呢?
学生各抒己见。
二、提出问题:
师;刚才我们观察三角形哪个内角和大,同学们有两种不同的猜想,可以肯定,必定有错下面我们来测量验证。
(1)以小组为单位请同学们拿出量角器,量一量,算一算图中大小两个三角形内角和度数,并做好记录,记录每个内角的度数。
(2)组内交流。
(4)师小结:我们通过测量发现,每个三角形的内角和测出结果接近180。
意图:通过这一操作活动,激发学生的兴趣,让学生积极参与培养学生的动手操作能力]
三、自主探索、研究问题、归纳总结:
(一)组内探索:
(1)以小组为单位探索更好的办法。
(2)以小组为单位边展示边汇报探索的过程与发现的结果。
(有的小组想不出来,可以安排小组和小组之间进行交流,目的是让学生通过实践发现结果,在探索中发现问题,在讨论中解决问题,是学生学习到良好的学习方法)
(4)根据学生的反馈情况教师进行操作演示。
撕拼法:
1、教师取出三角形教具,把三个角撕下来,拼在一起,
3、学生每人动手实践,看看是不是不同的三角形是否都有这个特点,也能拼出一个平角呢?
进行实验后,结果发现同样存在这一规律,三角形三个内角和是180。
折叠法:师:刚才我们通过测量发现三角形内角和接近180,那是因为测量的不那么精确,所以说“接近”,又通过撕拼方法发现三角形的三个内角刚好拼成一个平角,进一步说明三个内角和是180,现在再来演示另一种实验,再次证明我们的发现。
你们也来试一试好吗?
三角形三个内角和等于180?
意图:充分发挥了学生的主观能动性,让学生大胆去思考发言,把课堂交给学生,最后老师在演示达成共识,这样学生学到知识印象颇深,也理解最为透彻,提高课堂教学的效率
四、巩固练习,知识升华。
1、完成课本第28页的“试一试”第三题。
锐角三角形中的两个内角和能小于90吗?
3、有一个四边形,你能不用量角器而算出它的四个内角和吗?
意图:这样分层安排练习,注重培养学生的分析能力,同时也培养学生的思维能力和口头表达能力。
这节课同学们通过测量,发现了问题,然后运用撕拼,折叠两种方法验证自己的猜想,得出结论,这种学习方式很好,我们在今后的学习中还要用到,我们今天探究了三角形的一个秘密,其实它的秘密还很多,有兴趣的话,我们以后继续研究。课后反思:
当我设计这节课时,首先思考,学生面对这个新问题时会想到用那些方法来思考呢?很显然,学生根据三角形大的内角就大,是学生在探究时的真实想法,是一种合情推理,在探究过程中,怎样对待学生的这个错误呢?我没有简单地予以否定,迫不及待的帮助,而是引导学生否定错误猜想,寻找错误产生的原因,在这个过程中,教师启迪学生“转化”的思想求得突破,然后引导学生进行操作验证,从中得出结论,学生完整地经历探究的整个过程,不仅获得知识,还获得思想,充分发挥了学生的主观能动性,使他们轻松愉快的学习,提高了课堂效率。
三角形内角和教案【篇9】
1、通过量、拼、折、剪等方法探索和发现三角形的内角和等于180°掌握并会应用这一规律解决实际的问题。
2、通过讨论、争辩、操作、推理发展学生动手操作、观察比较和抽象概括的能力。
3、使学生掌握由特殊到一般的逻辑思辨方法和先猜想后研究问题的方法。
让学生经历“三角形内角和是180度”这一知识的形成发展和应用的全过程。
1、(出示两个直角三角板),问:这是咱们同学非常熟悉的一种学习工具,是什么呀?(三角板)它们的外形是什么形状的?(三角形)(课件:抽象出三角形)
(1)在三角形的内部相临两条边之间所夹的角叫做三角形的内角。(课件闪烁∠1)(板书:三角形内角)∠1就叫做三角形的什么?这两条边夹的角∠2呢?∠3呢?
1、根据我们以往对三角板的了解,你还记得每个三角形上每个内角各是多少度吗?(生说度数,师课件上在相应角出示度数:①90°、60°、30°,②90°、45°、45°)。
2、观察这两个三角形的度数,你有什么发现?
生1:都有一个直角,师:那我们就可以说他们是什么三角形?(板书:直角三角形)
生2:我还发现他们内角加起来是180度。师:他真会观察,你发现了吗?快算一算是不是他说的那样?
那么另一个三角板的三个内角的总度数是多少?
4、在三角形内三个内角的总度数又简称为三角形的内角和。(板书:和)
5、这个直角三角形的内角和是多少度?另一个呢?
6、你还记得180度是我们学过的是什么角吗?(平角)赶快在你的数学纸上画一个平角。
7、师述:角的两边形成一条直线就是平角。也就是180度,哦,这两个直角三角形的内角和就组成这样的一个角呀。
*“剪一剪”的方法:
我们在剪的时候要注意什么?剪完之后怎样拼?拼成的是什么?你怎么知道是平角?(提示:可以在我们画的平角上拼)
你们的直角三角形的内角和拼成的是平角吗?也就是内角和是多少度?
还有其他方法吗?
*“折一折”的方法:
②学生没有说出来,师:你们看老师还有一种方法请看:(课件:折的过程)其实折的方法和剪、撕的道理是一样的,最后都是把三个内角拼成平角。(板书:折)
*推理:
你们有用长方形来研究直角三角形内角和度数的吗?(课件:长方形)快想一想用长方形怎样去研究?(课件:长方形验证的过程)
这种方法就叫做推理,一般到中学以后我们经常会用到。(板书:推理)
(1)通过我们刚才的研究,我们发现直角三角形的内角和都是多少度呀?(板书:内角和是180°)刚才我们在测量的时候为什么会出现179度183度呢?看来只要是测量不可避免的会产生误差。
(2)在我们三角形的世界中,是只有直角三角形吗?还有什么?(板书:锐角三角形、钝角三角形)
2、直角三角形的内角和是180度,锐角三角形、钝角三角形的内角和又是多少度呢?你能利用我们刚才学到的知识来研究你所画的三角形的内角和是多少度吗?快试试,可以同桌讨论。(学生操作,汇报,课件演示)我们是用什么方法来研究的?
哪个组愿意把你们的研究成果向大家展示?
4、由此我们得到了锐角三角形的内角和是多少度?钝角三角形的内角和呢?我们就可以说所有三角形的内角和都是180度。
师:这也是三角形的一个特性,现在你对三角形的这一特性有疑问吗?(板书:三角形的内角和是180°)。
(1)每个三角形的内角和都是少度?
(2)(课件把两个三角形拼在一起)它的内角和是多少度?(这时学生答案又出现了180°和360°两种。)师:究竟谁对呢
(1)这是一个三角形,他的内角和是多少度?我从中剪去一个三角形他的内角和是多少度?
你们看这两个三角形他们的大小、形状都怎么样?但内角和都是180度,看来三角形的内角和的度数和他的大小形状都无关。
(2)我再把这个三角形剪去一部分,它的内角和是多少度?(课件:剪成四边形)
你能利用我们三角形的内角和是180度来研究这个四边形的内角和是多少度吗?
(3)如果五边形,你还能求出他的度数吗?
通过这节课的学习研究你掌握了哪些知识?我们是怎样研究的呢?
师:先研究的是特殊直角三角形的内角和是180度,接着通过量、拼等方法得到了直角三角形的内角和是180度,再利用直角三角形通过推理研究出锐角三角形和钝角三角形的内角和是180度。
三角形内角和教案【篇10】
教学目标:
1.掌握三角形内角和定理及其推论;
2.弄清三角形按角的分类,会按角的大小对三角形进行分类;
3.通过对三角形分类的学习,使学生了解数学分类的基本思想,并会用方程思想去解决一些图形中求角的问题。
4.通过三角形内角和定理的证明,提高学生的逻辑思维能力,同时培养学生严谨的科学态
5.通过对定理及推论的分析与讨论,发展学生的求同和求异的思维能力,培养学生联系与转化的辩证思想。
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。
问题1三角形三条边的关系我们已经明确了,而且利用上述关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
问题2你能用几何推理来论证得到的关系吗?
对于问题1绝大多数学生都能回答出来(小学学过的),问题2学生会感到困难,因为这个证明需添加辅助线,这是同学们第一次接触的新知识―――“辅助线”。教师可以趁机告诉学生这节课将要学习的一个重要内容(板书课题)
新课引入的好坏在某种程度上关系到课堂教学的成败,本节课从旧知识切入,特别是从知识体系考虑引入,“学习了三角形边的关系,自然想到三角形角的关系怎样呢?”使学生感觉本节课学习的内容自然合理。
让学生剪一个三角形,并把它的三个内角分别剪下来,再拼成一个平面图形。这里教师设计了电脑动画显示具体情景。然后,围绕问题设计以下几个问题让学生思考,教师进行学法指导。
问题2此实验给我们一个什么启示?
问题3由图中AB与CD的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
其中问题2是解决本题的关键,教师可引导学生分析。对于问题3学生经过思考会画出此线的。这里教师要重点讲解“辅助线”的有关知识。比如:为什么要画这条线?画这条线有什么作用?要让学生知道“辅助线”是以后解决几何问题有力的工具。它的作用在于充分利用条件;恰当转化条件;恰当转化结论;充分提示题目中各元素间的一些不明显的关系,达到化难为易解决问题的目的。
(2)通过类比“三角形按边分类”,三角形按角怎样分类呢?
学生回答后,电脑显示图表。
(3)三角形中三个内角之和为定值,那么对三角形的其它角还有哪些特殊的关系呢?问题1直角三角形中,直角与其它两个锐角有何关系?
问题2三角形一个外角与它不相邻的两个内角有何关系?
问题3三角形一个外角与其中的一个不相邻内角有何关系?
其中问题1学生很容易得出,提出问题2之后,先给出三角形外角的定义,然后让学生经过分析讨论,得出结论并书写证明过程。
这样安排的目的有三点:第一,理解定理之后的延伸――推论,培养学生良好的学习习惯。第二,模仿定理的证明书写格式,加强学生书写能力。第三,提高学生灵活运用所学知识的能力。
三角形内角和教案【篇11】
教学内容:
教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
1、什么是平角?平角是多少度?
2、计算角的度数。
3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
1、读学卡的学习目标、任务目标,做到心里有数。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和 是180°(师巡视)
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)
7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(4)一个等腰三角形,它的一个底角是50,那么它的顶角是( )。
(5)一个等腰三角形的顶角是60,这个三角形也是( )三角形。
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
1、小组讨论。2、汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想研究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教案【篇12】
教学过程:
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。(这里,有必要向学生直观介绍“内角”。)
师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)
师:请听要求,画一个有两个内角是直角的三角形,开始。(设置矛盾,使学生在矛盾中去发现问题、探究问题。)
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
师:也就是这个三角形各角的度数。它们的和怎样?
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
师:从刚才两个三角形内角和的计算中,你发现什么?
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
1。猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2。操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!
师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
3课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
师:为什么用测量计算的方法不能得到统一的结果呢?
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
四、应用三角形的内角和解决问题。
3、游戏巩固。在四人小组中完成:由一个同学出题,其它三个同学回答。(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?
三角形内角和教案【篇13】
学习目标:
(1) 知识与技能 :
掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。
(2) 过程与方法 :
通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。
通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。
(3)情感态度与价值观:
通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。
一.自主预习
二.回顾课本
1、三角形的内角和是多少度?你是怎样知道的?
2、那么如何证明此命题是真命题呢?你能用学过的知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。
3、回忆证明一个命题的步骤
①画图
②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。
③分析、探究证明方法。
4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?
①平角,②两平行线间的同旁内角。
5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?
① 如图1,延长BC得到一平角BCD,然后以CA为一边,在△ABC的外部画A。
② 如图1,延长BC,过C作CE∥AB
③ 如图2,过A作DE∥AB
④ 如图3,在BC边上任取一点P,作PR∥AB,PQ∥AC。
三、巩固练习
四、学习小结:
(回顾一下这一节所学的,看看你学会了吗?)
五、达标检测:
略
六、布置作业
三角形内角和教案【篇14】
教学内容:
教材第“做一做”及教材第69页练习十六第1~3题。
教学目标:
1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3.培养学生动手动脑及分析推理能力。
重点难点:
掌握三角形的内角和是180°。
教学准备:
三角形卡片、量角器、直尺。
导学过程
一、复习
1、什么是平角?平角是多少度?
2、计算角的度数。
二、新知
(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知” 的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)
任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:
(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(
(
5、结论:修改板书,把“?”去掉,写“是”。
三、知识运用(课件出示练习题,生解答)
1、填空
(1)一个三角形,它的两个内角度数之和是110 ,第三个内角是( ).
(2)一个直角三角形的一个锐角是50,则另一个锐角是( )。
(3)等边三角形的3个内角都是( )。
(。
(三角形。
2、判断
(
(
(
(
(
四、拓展探究
根据所学的知识,你能想办法求出四边形、五边形的内角和吗?
汇报结果。3、课件提示帮助理解。
五、自我评价根据学卡要求给自己评出“优”“良好”“合格”。
六、谈谈自己本节课的收获。
教学反思
今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。
任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。
如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。
如何验证内角和是空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。
本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。
给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。
前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。
总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。
三角形内角和教案【篇15】
《三角形内角和定理》说课稿
内丘县内丘镇中学 乔素霞
尊敬的各位评委、各位老师,大家好:
我是内丘县内丘镇中学的教师乔素霞,今天我说课的内容是《三角形内角和定理》。下面我将围绕本节课“教什么?”“怎么教?”“为什么这么教?”三个问题从教材分析、学情分析、教学设计、教学过程、教学反思等几个方面逐一分析说明。
一.教材分析
1.本节课所处的地位和作用
本节课是冀教版数学八年级下册第二十四章第五节《三角形内角和定理》的第一课时。其教学内容为三角形内角和定理的证明和简单运用。它是在学生对一些几何结论有了直观认识,并会简单说理的基础上,进一步认识几何图形以及规范证明过程的重要内容之一。三角形的内角和定理揭示了组成三角形的三个内角之间的数量关系,是求角的度数的有力工具,在实际生产生活中有着广泛的应用。此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础。因此,本节课起着承上启下的作用。
2.教学目标
本着教学目标应科学简明,体现全面性、综合性和发展性的原则,制定目标如下:
(1)知识与技能
掌握三角形内角和定理的证明和简单运用;初步体会辅助线在证明中的作用。
(2)过程与方法
经历利用剪拼三角形验证三角形内角和定理,探索其证明思路的过程,使学生掌握一定的探索方法;通过渗透“化归”的数学思想,使学生体会解决数学问题的基本思路。(3)情感态度与价值观
培养学生合作交流意识和探索精神;培养学生有条理的思考问题和合乎情理的表达问题的能力。3.教学重点和难点
教学重点:三角形内角和定理的证明与简单运用。
教学难点:引导学生添加辅助线解决问题,并进行有条理的表达。二.学情分析
初二学生已具备了一定的学习能力,操作、归纳、推理能力。他们思维活跃,对新知识有较强的探求欲望,但是对于严密的推理论证,在知识结构和能力上都有所欠缺。
三. 教学设计 1.教法
本节课主要采用“情境创设”、“设疑诱导”等教学方法,同时利用多媒体课件作为辅助教学手段。
2.学法(1)动手操作(2)合作交流(3)自主学习3.设计思路
《新课标》指出:“教师要成为学生数学活动的组织者、引导者、合作者;要善于激发学生的学习潜能,鼓励学生大胆创新与实践。”因此我设计了以学生活动为主线,以突出重点、突破难点,发展学生素养为目的教学过程。采用创设情境、启发诱导、动手操作、合作交流等方法,在教师的引导下,通过同学间的互相探讨、启发,在自主探索中发现新知、发展能力。
四.教学过程
情境引入→活动探究→实践运用→小结反思 1.创设情境,引入新课
新课标下的数学课程倡导从学生实际出发,发挥学科自身优势,激发学生的学习兴趣,促使学生主动地学习。因此我通过一段动画引入课题,由动画中三个小动物的争论引出三角形内角和大小的问题,让学生作出评判:到底谁的内角和大?在学生评理说理中自然导入三角形内角和的学习探究。由此引入新课,既提出了数学问题,又激发了学生学习数学的兴趣。
2.活动探究,获取新知
要求学生把事先准备好的三角形纸板的三个内角剪下,然后将剪下的三个内角随意的拼接在一起,使三者顶点重合,问能发现怎样的现象。学生分组动手操作,在探讨各种拼图的方法后派代表展示拼接的图形,教师借助多媒体展示其中的具有代表性的拼接方法。通过学生的观察、猜想、度量得到结论:三角形三个内角的和是180°。但是有的学生提出质疑:有时候量出三角形三个内角的度数和要高于或低于180°。此时,教师适时说明:通过观察剪拼得到的结论虽然有一定的合理性,但是会存在误差,命题的正确性必须经过严密的推理来验证。通过实际操作让学生体会到证明的必要性。
由剪拼三角形得到三角形内角和为180°,到添加辅助线证明这个定理,对学生来说有一定的难度,因此在教学时,我对教材做了铺设台阶,化解难点的处理。先让学生指出这个命题的条件和结论,并画出图形,结合图形写出已知、求证。目的是让学生逐步学会用符号表示命题,发展他们的数学符号表达能力。然后对照刚才的拼图过程,尝试用几何图形来表示出所拼接的实物图。此环节应留给学生充分的思考、讨论、体验的时间,让学生在交流中互取所长。
几何图形描绘出来之后,师生一起探究证明思路,先引导学生观察在刚才的拼接过程中∠1和哪个角相等?这两个角具有怎样的位置关系?由它们的位置关系与等量关系我们可以得到射线CE与线段AB具有怎样的位置关系?通过学生的思考、交流引导他们说出探究1中添加辅助线的方法:延长BC到点D,过点C作射线CE∥AB.这样就可以借助平行线的性质将∠A移到∠1的位置,将∠B移到∠2的位置。(此时,教师即可给出学生辅助线的定义、作用,以及作辅助线的注意事项),然后由学生尝试写出证明过程,教师巡回指导。有一部分学生写证明过程有困难,可给予有针对性的帮助。完成之后让多名学生口答自己的证明过程,培养他们说理有据,有条理的表达自己想法的良好意识。师生共同评议,订正,在交流中发现问题、解决问题,共同提高。(学生的证明过程出现了两种不同的方法:有的学生把三个内角凑成一个平角来证明,而有的学生则借助“两直线平行,同旁内角互补”来证明)。对学生的独到的见解,不同的证题方式,我及时进行肯定与鼓励,3 使学生感受成功的喜悦。最后教师规范证明过程,给出证明的书写格式,使学生学习有章可依。
探究2的思路分析和添加辅助线的方法,由学生类比于探究1的步骤合作交流后独立完成证明过程。通过教师的正确引导,使学生掌握三角形内角和定理的证明方法,从而突出本节课的重点。对证明的格式、方法和步骤,要在学生亲身经历、体验的过程中去逐步理解和掌握。
对于探究3,引导学生观察拼接的图形,说出添加辅助线的方法,证明过程让学生课下独立完成。
探究完成之后,师生共同进行归纳得到三角形内角和定理:三角形三个内角的和等于180°。然后教师引导学生总结辅助线的添加方法,即通过添加平行线,把三角形的三个内角转化成一个平角或者转化为一组同旁内角来证明。让学生交流自己发现的其他证题思路,并进行适当的比较和讨论,努力给他们创造一个“海阔凭鱼跃,天高任鸟飞”的课堂氛围,使学生的求异思维和创新意识得到及时的表现。
通过学生的思考、争论达到思想上的碰撞,激发新思维。本节课的难点也会趁此而突破。
3.实践运用,巩固新知
新课标提倡发展应用数学知识的意识与能力。因此在推理证明完成之后,我设计了一组题目来巩固所学定理。首先是例题1的学习,教师进行适当的引导和点拨后,由学生独立完成。然后师生一起理顺思路,规范格式。
其次是基础练习。通过试一试、练一练、做一做,让学生经历运用所学知识解决问题的过程,使学生对初步感知的结论有更加深刻的认识,进一步发展他们的推理论证能力。
为了提升学生的应用能力,我还设计了两个实际问题。通过解决问题让学生体会到数学来源于生活,又服务于生活,从而激发他们学习数学的积极性,建立学好数学的自信心。4.小结反思,提高认识
回顾本节知识脉络,请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给我 4 们教者本身一个反思提高的机会。
5.布置作业
分层次留作业,尊重学生的个性差异,让不同的学生在数学学习上都有收获和进步。
6.板书设计
采用提纲式板书,突出重点,一目了然。五.教学反思
本节课教师主导作用的发挥是比较好的,主要体现在让学生的主体地位得到充分展示。例如:证明方法的发现和小结等。同时使学生感受到了学习的快乐,体会到了探究与发现带来的乐趣。教学中,我遵循的基本教学原则是激励学生展开积极的思维活动,不断的表扬学生,使学生感到自身的价值存在,给学生一个展示个性、尝试成功的机会。
总之,本节课力求从学生实际出发,通过他们的实践、思考、探索、交流获得知识,形成技能,发展思维。存在的不足之处还恳请各位评委老师批评指正。
三角形的内角和教案六篇
居安思危,思则有备,有备无患。杰出的幼儿教学工作者能使孩子们充分的学习吸收到课本知识,为了将学生的效率提上来,老师会准备一份教案,教案有利于老师在课堂上与学生更好的交流。幼儿园教案的内容要写些什么更好呢?有请驻留片刻,小编为你推荐三角形的内角和教案六篇,但愿对你的学习工作带来帮助。
三角形的内角和教案(篇1)
(一)创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的`关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)探索新知
1、动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2、尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3、证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4、学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B—∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设∠A=x°,则∠B=3x°,∠C=5x°
由三角形内角和定理得,x+3x+5x=180
解得,x=20
∴∠A=20°∠B=60°∠C=100°
(6)已知在△ABC中,∠C=∠ABC=2∠A,求(1)∠B的度数?(2)若BD是AC边上的高,∠DBC的度数?
第(6)题是书中例题的改用,此题由辅助线辅助课件打出,给学生以图形由简单到繁的直观演示。
通过这组练习渗透把图形简单化的思想,继续渗透统一思想,用代数方法解决几何问题。
5、巩固提高,以生为本
(1)如图:B、C、D在一条直线上,∠ACD=105°,且∠A=∠ACB,则∠B=——度。
(2)如图AD是△ABC的角平分线,且∠B=70°,∠C=25°,则∠ADB=——度,∠ADC=——度。
本组练习是三角形内角和定理与平角定义及角平分线等知识的综合应用。能较好的培养学生的分析问题、解决问题的能力,有助于获得一些经验。
6、思维拓展,开放发散
如图,已知△PAD中,∠APD=120°,B、C为AD上的点,△PBC为等边三角形。试尽可能多地找出各几何量之间的相互关系。
本题旨在激发学生独立思考和创新意识,培养创新精神和实践能力,发展个性思维。
(三)归纳总结,同化顺应
1、学生谈体会
2、教师总结,出示本节知识要点
3、教师点评,对学生在课堂上的积极合作,大胆思考给与肯定,提出希望。
(四)作业
1、必做题:习题3.1第10、11、12题
2、选做题:习题3.1第13、14题
(五)板书设计
三角形内角和
学生拼图展示已知:求证:
证明:开放题:
三角形的内角和教案(篇2)
“三角形内角和”教学设计
教学内容:义务教育教科书《数学》(人教版) 四年级下册第67页例6。 教学目标:
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。 教学重点:
学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。 教学难点:
学生理解不同探究方法的内涵和对所得结论的灵活运用。 设计思路:
三角形的内角和是三角形的一个重要特征,它是在学生已经熟悉长方形、平角等有关知识,并掌握了三角形的特征及分类之后的基础上学习的。四年级的学生已具备了初步的动手操作能力、主动探究能力以及合作学习的习惯,他们正处于由形象思维向抽象思维过渡的阶段。《课标》明确指出“要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力”。因此,这节课我将重点引导学生从“猜测—验证—得出结论”展开学习活动,让学生感受这种重要的思维方式。并在教学中渗透“从特殊到一般”、“利用旧知解决新知”、“进行转化”等数学思想。
同时借助交互式电子白板的画图、手写、图片处理、屏幕捕获、隐藏、拖拽、链接及较好的交互功能等,让学生通过自主探索、实验、发现、讨论、交流获得知识,形成结论。
教学准备:多媒体课件、三角尺等。 教学过程:
一、激趣引入
(一)认识三角形内角
师:我们已经认识了什么是三角形,谁能说出三角形有什么特点? 生1:三角形是由三条线段围成的图形。 生2:三角形有三个角,……
师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(白板:画弧线,标上∠
1、∠
2、∠3),我们把三角形里面的这三个角分别叫做三角形的内角。 (利用交互式电子白板的画图、手写功能,直接演示找三角形三个内角的过程并标示出来,帮助学生理解三角形的内角的概念。)
(二)设疑,激发学生探究新知的心理 师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理) 生:能。 师:请听要求,画一个有两个内角是直角的三角形,开始。 师:有谁画出来啦? 生1:不能画。
生2:只能画两个直角,围不成三角形。 生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。 师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道? 生:想。
师:那就让我们一起来研究吧! (揭示矛盾,巧妙引入新知的探究)
(利用交互式电子白板的画图、手写功能,让学生直观感受三角形中不可能有2个90度的内角。设置认知矛盾,使学生在矛盾中去发现问题、探究问题。)
二、动手操作,探究新知
(一)研究特殊三角形的内角和
师:请看屏幕。(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。(课件闪动其中的一块三角板)
生:90°、60°、30°。(课件演示:由三角板抽象出三角形) 师:也就是这个三角形各角的度数。它们的和怎样? 生:是180°。
师:你是怎样知道的?
生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。)这个呢?它的内角和是多少度呢?
生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么? 生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。 (利用交互式电子白板的手写功能,直接在由三角板抽象出来的三角形上标出各个角的度数并列式求出其内角和。)
(二)研究一般三角形内角和 1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。 生1:180°。 生2:不一定。 ……
2.操作、验证一般三角形内角和是180°。 (1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?
生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧! 师:每个小组都有不同类型的三角形。每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。)
(2)小组汇报结果。
师:请各小组汇报探究结果。 生1:180°。 生2:175°。 生3:182°。 ……
(三)继续探究
师:没有得到统一的结果。这个办法不能使人很信服,怎么办?还有其它办法吗?
生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
师:怎样才能把三个内角放在一起呢? 生:把它们剪下来放在一起。 1.用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。 2.汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?
生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。 生3:钝角三角形的内角和还是180°。 3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)
(此部分内容是本节课的重点及难点所在,因此,在教学中:
1、利用交互式电子白板资源共享中即时显示度数的量角器,令学生上台演示量三角形各个角的大小的操作变得更简单、准确。增强了师生及生生之间的互动性。
2、利用交互式电子白板强大的链接功能,将网络资源链接过来:动画形象演示“拼”的方法验证三角形内角和的过程,弥补了人工操作无法直观再现学生的思维过程的短处。通过以上两点,将学生在研究三角形内角和为什么是180°的思维过程呈现出来,达到突出重点以及突破难点的目的。) 师:我们可以得出一个怎样的结论? 生:三角形的内角和是180°。
(屏幕显示:三角形的内角和是180°学生齐读一遍。)
(利用交互式电子白板的隐藏、拖拽功能,将结论在适当的时候呈现。)
师:为什么用测量计算的方法不能得到统一的结果呢? 生1:量的不准。
生2:有的量角器有误差。 师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)
生:因 为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢? 生:不可能。 师:为什么?
生:因为两个锐角和已经超过了180°。 师:那有没有可能有两个锐角呢?
生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1.看图求出未知角的度数。(知识的直接运用,数学信息很浅显)
2.按要求计算。(数学信息较为隐藏和生活中的实际问题)
(
1、利用交互式电子白板的屏幕捕获、链接等功能,让练习逐步呈现,让学生解决问题时更加专注。
2、利用交互式电子白板的手写功能,将学生解决问题的多种方法同时呈现,进行对比,加强了师生及生生之间的互动交流。)
五、全课小结。
师:今天你学到了哪些知识?是怎样获取这些知识的?(学生自由发言) (利用交互式电子白板的即时记忆功能,用课堂生成的课件资源回顾总结,便于学生再次回顾课堂学习过程,明确学习所得。)
三角形的内角和教案(篇3)
【设计理念】
新课标重视让学生经历数学知识的形成过程,要求教师创设有效的问题情境激发学生的参与欲望,提供足够的时间和空间让学生经历观察、猜测、验证、交流反思等过程,使学生在动手操作、合作交流等活动中亲身经历知识的形成过程。这样,学生不仅可以掌握知识,而且可以积累探究数学问题的活动经验,发展空间观念和推理能力。
【教材内容】
新人教版义务教育课程标准实验教科书四年级下册数学第67页例6、“做一做”及练习十六的第1、2、3题。
【教材分析】
三角形的内角和是三角形的一个重要特征。本课是安排在三角形的概念及分类之后教学的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材很重视知识的探索与发现,安排两次实验操作活动。教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间和时间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、拼等活动,让学生探索、实验、交流、推理归纳出三角形的内角和是180°。
【学情分析】
1、在学习本课时,学生已经有了探索三角形内角和的知识基础:知道直角和平角的度数,会用量角器度量角的度数;认识长方形、正方形,知道他们的四个角都是直角;认识了三角形,知道了三角形按角分有锐角三角形、直角三角形和钝角三角形;已经知道了等腰三角形和正三角形。
2、已经有一部分学生知道了三角形内角和是180°,只是知其然而不知所以然。
【教学目标】
1通过“量、剪、拼”等活动发现、验证三角形的内角和是180°,并能运用这个知识解决一些简单的问题。
2.在观察、猜想、操作、合作、分析交流等具体活动中,提高动手操作能力,积累基本的数学活动经验,发展空间观念和推理能力。
3.在参与数学学习活动的过程中,获得成功的体验,感受数学探究的严谨与乐趣。
【教学重点】
探索发现、验证“三角形内角和是180°”,并运用这个知识解决实际问题。
【教学难点】
验证“三角形的内角和是180°”。
【教(学)具准备】
多媒体课件; 锐角三角形、直角三角形、钝角三角形纸片若干个各类三角形(也包括等边、等腰)、长方形、正方形若干个;每人一个量角器;一把剪刀;每人一副三角尺。
【教学步骤】
一、复习旧知 引出课题
1、你已经知道有关三角形的哪些知识?
2、出示课题:三角形的内角和
【设计意图:也自然导入新课。】
二、提出问题 引发猜想
1、提出问题:看到这个课题,你有什么问题想问的?
预设:(1)三角形的内角指的是哪些角? (2)三角形的内角和是什么意思?
(3)三角形的内角一共是多少度?
2、引发猜想
猜一猜:三角形的内角和是多少度?你是怎么猜的?
【设计意图:提出一个问题比解决一个问题更重要。课始在复习三角形已学知识后,引导学生提出有关三角形的新问题,让学生学习自己想研究的内容,无疑激发了学生的学习兴趣,培养了学生的问题意识。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。】
三、操作验证 形成结论
1、交流验证方法:
(1)用什么方法证明三角形的内角和是180度呢?
预设: ①量算法 ②剪拼法 ③折拼法等
(2)三角形的个数有无数个,验证哪些三角形可以代表所有的三角形?我们的操作过程怎么分工才会做到省时又高效?
2、动手验证
3、全班汇报交流
4、小结:刚才通过大家的动手操作验证了三角形的内角和是180 °度。但动手操作会存在一定的误差,我们的结论也可能存在偏差。
5、方法拓展
推理验证:用直角三角形的内角和来证明其他三角形内角和是180 °的方法。
6、形成结论:任意三角形的内角和是180 °。
【设计意图:
《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的学习提供了经验支撑。】
四、应用结论 解决问题
1、巩固新知:想一想,算一算。
2、解决问题:等腰三角形风筝的顶角是多少度?
3、辨析训练,完善结论。
五、课堂总结,归纳研究方法
今天这节课你学到了哪些知识?你是怎样得到这些知识的?
六、课后延伸:用今天所学的方法继续研究四边形的内角和。
七、板书设计:
三角形的内角和
猜测: 三角形的内角和是180°?
验证: 量 拼
结论: 任意三角形的内角和是180°
三角形的内角和教案(篇4)
探索与发现
(一)-----三 角 形 内 角 和
说 课 稿
一、教材分析
“三角形内角和”是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了三角形的主要特征和三角形的分类的基础上进一步探究三角形有关性质中的三个内角的性质。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步探索发现三边性质的基础。
二、设计思路
基于教材的内容安排和呈现结构特点我拟定本节课的教学目标为: 1.通过自主探索、合作交流,发现三角形内角和等于180度。
2.通过学生画、量、撕拼、折拼、观察等活动,培养学生的探索发现动手操作能力及阅读插图找信息的能力。
3.能运用三角形内角和这一性质解决简单的实际问题。
4.让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;体验探索的乐趣和成功的快乐,增强学好数学的信心。教学重点:
探索并发现三角形内角和等于180度。教学难点:
运用三角形的内角和的性质解决简单的实际问题。教学方法:
课件演示、小组合作 教学准备:
三角尺、量角器、三角形纸片、双面胶、课件 教学流程:
根据设定的教学目标和教材呈现的各个情境主题图为线索,我把“三角形内角和”的知识分四个步骤来完成:
一、“创设情境,建立模型”:
复习三角形的有关知识为新知的学习做好铺垫,改编创设书上27页“大小三角形争论”情景引入新课,引起学生好奇心,激发探究欲望。
二、动手操作,自主探究: 1.活动一,量一量,通过测量发现大小,形状不同的每个三角形,三个内角的度数和都接近180度;
2.活动二,撕一撕,拼一拼。学生会发现撕下的三个角,可以拼成一个平角,也进一步证明了三角形的三个内角和是180°。
3.活动三,折一折。折叠一个三角形的三个内角,把三个角折叠在一起,三个角在一条直线上,从面得到三角形的三个内角和等于180°。
学生通过上面三个活动的操作,得出了一个结论:三角形内角和是180°.三、巩固与应用
利用今天所学知识回到课始判断大小三角形谁说得对.设计一般三角形已知两个角度度数,求第三个角的度数,学会运用三角形内角和是180度来解决,在这里我也注重对学生阅读插图能力的培养,让学生看书先说说图上告诉了哪些信息,要求什么,然后再想办法计算。
四、总结与拓展
假如你是一个三角形,你该如何向别人介绍自己? 根据三角形内角和等于180°,你能求出四边形的内角和是多少吗?
富兵
2014年3月4日
北师大版四年级数学下册
探 索 与 发 现
(一)----三角形内角和(说课稿)
官 庄 学 区 中 心 小 学
富 兵
2014年3月4日
三角形的内角和教案(篇5)
一、说教材
1、教学内容苏教版《义务教育六年制小学教科书·数学》四年级下册第130~131页。
2、教材简析
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的。通过学习三角形的内角和使学生学会求三角形中第三个内角的度数的方法,同时让学生经历探索、猜想、归纳等过程,发展学生的合情推理能力。
3、教学目标
(1)让学生探索发现三角形的内角和是180°。
(2)通过动手拼摆等活动提高学生的动手能力和思维能力,感受数学的转化思想。
(3)进一步发展学生空间观念。
4、教学重点
探索发现三角形的内角和是180°。
5、教具准备
多媒体课件
6、学具准备
每人准备几个不同类型的三角形。
二、说教法、学法
新课程明确倡导动手实践、自主探究、合作交流的学习方式。这就要求教师的角色,应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了一个开放的、富有挑战性的问题情境,让学生独立、自主地去探究验证,通过实验、操作、交流等活动,获得知识与能力,掌握解决问题的方法,获得情感体验。
三、说教学过程
(一)猜角设疑,揭示课题我们来做个游戏叫“猜角”。请同学们拿起桌子上量好角角度的三角形。你只要报出三角形中任意两个角的度数,我就能猜出你第三个角的度数。想信吗?(不相信),下面我们来试一试。(师生猜角活动。)师:你想知道老师是怎么猜的吗?其中的奥秘就在今天我们要探索的知识。(板书:“的内角和”并齐读课题)[设计意图]在教学中激励学生展开积极的思维活动。先创设猜角的游戏情境,让学生对三角形三个角的度数关系产生好奇,引发学生的探究欲望。通过本节课的学习,你有什么收获?你还有什么问题吗?
三角形的内角和教案(篇6)
三角形内角和定理的证明说课稿
马建禄
一、说教材:
(一)、教材的地位及作用:
本节课是北师大版实验教科书八年级下册第六章第五节的内容。是在学习了平角、同位角、内错角、同旁内角、探索两直线平行的条件及三角形内角和定理的基础上,进一步探索三角形内角和定理的证明.为今后学习多边形内角和、外角和,圆等知识打下良好的基础,具有承上启下的作用。且三角形内角和定理在日常生活中,如机械制造、工程设计、国防等领域具有广泛应用。
(二)、教学目标设计:
1、知识与技能:
(1)掌握“三角形内角和定理”的证明及其简单应用。(2)对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。
(3)通过一题多解,初步体会思维的多向性,引导学生的个性化发展。
2、过程与方法:通过动手操作、探索、观察、分析、归纳培养学生获得数学结论的能力。
3、情感与价值观:培养学生创造性,弘扬个性发展,体验解决
用为主线来展开。采用了教具演示的教学手段,使图形直观、形象地便于学生理解。以学生发展为本的原则,我运用启发式教学方法,引导学生动手操作、探索、讨论、归纳。在教学过程中,引导学生去探索,使学生感受到添加辅助线的数学思想,更好地掌握三角形内角和定理的证明及简单的应用,从而实现教师是引导者和学生是主体者的课堂教学理念。
(二)说学法
根据本节课特点和学生的实际,八年级学生基本具备动手操作、探索讨论、猜想、说理的能力,主要采用“操作—观察—讨论—证明—应用 ”的探究式的学习方式,教会学生“ 动手做,动脑想,大胆猜、会说理,学致用”的学习方法。增加学生参与的机会,使学生在掌握知识、形成技能的同时,培养科学的学习方法和自信心。
四、说教学过程设计
教学过程的设计应根据学生的实际情况,教法、学法的确定,以完成教学目标为目的。
(一)、创设问题情境,引入新课:
1.提出疑问:前面的课程学习了三角形三条边的关系,那么三角形的三个内角又存在怎样的关系呢?
2.动手实践:我们知道三角形三个内角的和等于180°.你还记得这个结论的探索过程吗?